
Abstract. Neural network models are discussed that have been
developed during the last decade with the purpose of reprodu-
cing spatio-temporal patterns of neural activity in different
brain structures. The main goal of the modeling was to test
hypotheses of synchronization, temporal and phase relations in
brain information processing. The models being considered are
those of temporal structure of spike sequences, of neural activ-
ity dynamics, and oscillatory models of attention and feature
integration.

1. Introduction

1.1 The `Decade of the Brain'
In modern biology, neurosciences hold a leading position in
that they attract as many physicists and mathematicians as
molecular genetics and biotechnologies do; but on the other
hand they are probably more than a match for these
disciplines in terms of complexity of mathematical problems
posed by their subject matter. In the past years, Uspekhi
Fizicheskikh Nauk [Physics ±Uspekhi] has published several
reviews on physical and mathematical aspects of neural
activity [1 ± 3]. This article continues this series.

The rapid accumulation of experimental data during the
last quarter of the 20th century laid down the foundations for
the accomplishment of no less a task than the creation (based
upon recent progress in physics, biophysics, and computer
technologies) of a concept of brain work consistent with the
available findings, even if it does not give a definitive answer to
the question `How does man think?'. There are more motives
for the priority development of neurosciences, such asmeeting
practical needs of medicine and the search for non-traditional
approaches to the construction of `intellectual' technologies.

By way of example, a session of the US Congress, by the
joint Resolution of the Senate and the House of Representa-
tives of July 25, 1989, proclaimed the `Decade of the Brain'.
The Resolution, covering various fields of neuroscience is
represented in full in [4]. Here are its opening and closing
paragraphs.

G N Borisyuk, R M Borisyuk Institute for Mathematical Problems

in Biology, Russian Academy of Sciences,

142290 Pushchino, Moscow Region, Russian Federation

School of Computing, University of Plymouth, Plymouth, PL4 8AA, UK

Tel. (44) (1752) 23 26 19. Fax (44) (1752) 23 25 40

E-mail: borisyuk@soc.plym.ac.uk

Ya B Kazanovich Institute for Mathematical Problems in Biology,

Russian Academy of Sciences,

142290 Pushchino, Moscow Region, Russian Federation

Tel. (7-0967) 73 37 13. Fax (7-0967) 79 05 70

E-mail: kazanovich@impb.psn.ru

G R Ivanitski|̄ Institute for Theoretical & Experimental Biophysics,

Russian Academy of Sciences,

142290 Pushchino, Moscow Region, Russian Federation

Tel. (7-095) 923 96 68; (7-095) 923 74 67 (ext. 243). Fax (7-0967) 79 05 53

E-mail: ivanitsky@venus.iteb.serpukhov.su

Received 13 November 2001, revised 25 January 2002

Uspekhi Fizicheskikh Nauk 172 (10) 1189 ± 1214 (2002)

Translated by Yu VMorozov; edited by M S Aksent'eva

REVIEWS OF TOPICAL PROBLEMS PACS numbers: 87.18.Su, 87.19.Dd, 87.19.La

Models of neural dynamics in brain information processing Ð

the developments of `the decade'

G N Borisyuk, R M Borisyuk, Ya B Kazanovich, G R Ivanitski|̄

DOI: 10.1070/PU2002v045n10ABEH001143

Contents

1. Introduction 1073
1.1 The `Decade of the Brain'; 1.2 Technical tools for brain research. Classification of neural networks; 1.3 Statement of

the task

2. Coding by spike sequences 1077
2.1 The neuron and characteristics of spike sequences; 2.2 Stochastic neuron and neuron as a coincidence detector;

2.3 Adaptation of neural activity

3. Neuron activity dynamics 1078
3.1 Oscillatory activity of neural ensembles; 3.2 Small oscillatory networks. Bifurcation analysis; 3.3 Large oscillatory

networks. `Games' with coupling characteristics; 3.4 Learning in neural networks; 3.5 Synchronization and phase

relations in respiration and locomotion models; 3.6 Oscillatory models of information processing in the hippocampus

4. Models of attention and feature integration 1084
4.1 Storage of information about feature association; 4.2 Feature integration models: parallel procedures; 4.3 Feature

integration models: consecutive procedures; 4.4 Models of attention

5. Conclusion 1090
5.1 A 40-year dispute still incomplete; 5.2 Prospects for further research

6. Appendices 1092
6.1 Integrate-and-fire neuron dynamics; 6.2 Oscillatory model of attention

References 1093

Physics ±Uspekhi 45 (10) 1073 ± 1095 (2002) #2002 Uspekhi Fizicheskikh Nauk, Russian Academy of Sciences



``Whereas it is estimated that fifty million Americans are
affected each year by disorders and disabilities that involve the
brain, including the major mental illnesses; inherited and
degenerative diseases; stroke; epilepsy; addictive disorders;
injury resulting from prenatal events, environmental neurotox-
ins and trauma, and speech, language, hearing and other
cognitive disorders;

Ð Whereas it is estimated that treatment, rehabilitation
and related costs of disorders and disabilities that affect the
brain represent a total economic burden of 305,000,000 US
dollars annually;

ÐWhereas the people of the Nation should be aware of the
exciting advances in research on the brain and of the availability
of effective treatment of disorders and disabilities that affect the
brain;

Ð Whereas a technological revolution occurring in the
brain sciences, resulting in such procedures as positron
emission tomography and magnetic resonance imaging, per-
mits clinical researchers to observe the living brain noninva-
sively and in exquisite detail, to ifentify brain systems that are
implicated in specific disorders and disabilities, to study
complex neuropeptides and behavior as well as to begin to
learn about the complex structures underlying memory;

Ð Whereas scientific information on the brain is amassing
at an enormous rate, and the field of computer and information
sciences has reached a level of sophistication sufficient to handle
neuroscience data in a manner that would be greatly useful to
both basic researchers and clinicians dealing with brain function
and dysfunction;

Ð Whereas advances in mathematics, physics, computa-
tional science, and brain imaging technologies have made
possible the initiation of significant work in imaging brain
function and pathology, modeling neural networks and simulat-
ing their dynamic interactions;

Ð Whereas comprehending the reality of the nervous
system is still on the frontier of technological innovation
requiring a comprehensive effort to decipher how individual
neurons, by their collective action, give rise to human intelli-
gence ...'', etc.

In the context of this paper, key phrases of the Resolution
are those given in boldface. The Resolution concluded as
follows:

``... whereas the people of the Nation should be concerned
with research into disorders and disabilities that affect the
brain, and should recognize the prevention and treatment of
such disorders and disabilities as a health priority and whereas
the declaration of the Decade of the Brain will focus needed
government attention on research, treatment, and rehabilitation
in this area: Now, therefore, be it Resolved by the Senate and
House of Representatives of the United States of America in
Congress assembled, That the decade beginning January 1st,
1990, hereby is designated the `Decade of the Brain,' and the
President of the United States is authorized and requested to
issue a proclamation calling upon all public officials and the
people of the United States to observe said decade with
appropriate programs and activities.''

In 1989, American colleagues invited Russian research
institutions to take part in the `Decade of the Brain', the
reason being such comprehensive studies require large funds
that place a heavy burden on the budget of any country, even
such a rich one as the United States. In February 1990, one
of the authors (jointly with professor O S Vinogradova to
whose memory this paper is dedicated) proposed a national
neurological research program. However, the dissolution of

the USSR followed by the collapse of the country's
economic system, inflation, and practical cessation of state
funding for scientific research in the early 1990s buried the
program. What remains are two monographs by a panel of
expert scientists [5, 6] assembled to review the then most
topical issues of the problem and a booklet [4] expounding
the program and giving reasons for its necessity. Many
participants of the program joined universities in the USA
and Europe to continue their studies in the framework of the
`Decade of the Brain' even though some work is still
underway at the institutions of the Russian Academy of
Sciences.

The present review is concerned with those lines of
research that are printed in boldface in the citation of the
Resolution proclaiming the `Decade of the Brain' in preced-
ing paragraphs. Main attention is given to the studies on
modeling neuron activity dynamics carried out during the last
decade.

1.2 Technical tools for brain research.
Classification of neural networks
Studies of neuron activity dynamics raise great interest
amongst both neurobiologists and specialists in mathemati-
cal modeling. Notwithstanding the utmost complexity and
variability of brain electrical activity, there is a wealth of
experimental data suggesting persistent spatio-temporal
relations between activities of individual neurons, neural
ensembles, and brain structures. Theoretical interpretation
of these findings is indispensable for the success of further
purpose-oriented studies.

The available data on neural activity and principles of
neuron interactions appear insufficient for understanding the
mechanisms of information processing in the brain, such as
coding, memorizing, recalling, recognizing, decision making,
thinking, etc. Mechanisms of attention, discrimination of
conscious and unconscious psychic processes, emotional
effects are equally obscure.

Are there general principles of brain information proces-
sing? If any, what are their specific manifestations in electrical
activity of different brain structures? Are the known patterns
of neural activity consistent with these general principles or
are they merely experimental artefacts? Answers to these
questions depend, to a large extent, on the theoretical
interpretation of the experimental findings.

The theory of neural networks (terms `computational
neuroscience' and `neural computations' are used to the
same effect in the literature) is a promising line of theoretical
brain research. Mathematical and computer models, devel-
oped in the framework of this theory, may be helpful in the
solution of the following problems:

Ð development of general concepts and hypotheses,
verification of their practicability and consistency with the
available experimental data;

Ð identification of main (essential) variables and para-
meters of neural systems responsible for their informational
characteristics;

Ð analysis of the role of various mechanisms (biochem-
ical and biophysical) in the functioning of neural structures;

Ð designing new targeted experiments and prediction of
difficulties likely to be encountered during their perfor-
mance.

A neural network is a system of dynamically interacting
elements that emit and receive signals. The simplest variant of
a discrete element is presented in Fig. 1a, where ji are input
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functions, F (j1, j2, j3, . . ., jn) Ð family of input functions,
faj1

, aj2
, aj3

, . . ., ajn
gÐset of numbers (weight coefficients),

yÐthreshold function,cÐoutput function. LetX be a set of
characteristics of external stimuli that come to receptors
generating input functions ji. Therefore, in a discrete
threshold variant, c�X� � 1 if only Saji

ji�X� > y. Intui-
tively, it is clear that each ji contains information of
whether an output function c is true or false for each
external situation X. If c�X� is on the whole positively
correlated with family j�X�, it may be expected that weights
will be positive too. Conversely, in case of negative
correlation, weights aji

will be negative. However, the idea
of a correlation should be regarded here as an analogy
rather than literally. It will be shown below that networks of
neurons give rise to more complicated relationships than
mere correlations. Depending on the problem to be
resolved, elements of a neural network may, with a
different degree of detalization, simulate the principles of
functioning of individual neurons, their populations (e.g.
inhibitory or excitatory) or neural structures (see Conclu-
sion for a more detailed consideration). In classical
neurophysiological experiments, these levels of detalization
are represented by the spike-generating activity of indivi-
dual neurons, local field potential of neural ensembles, and
whole brain electroencephalogram (EEG) patterns pro-
duced by the multielectrode technique.

The simplest mechanical analog of computation in neural
networks is `a swing with a distributed weight' in a one-
dimensional case or `a ball rolling down an inclined surface
cut by ravines' in a two-dimensional one. Figure 1b shows `a
swing'. Assume that an external situation X is depicted as
weight location in certain zones f p1; p2; . . . ; png. Let
ji�X� � 1 when the weight is at the i-th point. In the case
shown in Fig. 1b, ai � �iÿ 4�, y � 0, and the result of
computation is S�iÿ 4�ji�X� > 0. The logical conclusion is
that `the board descends to the right', i.e. only one decision is
chosen of the two at hand.

Modern approaches to the analysis of neural structure
activity include, besides EGG, such methods as positron
emission tomography (PET), magnetic resonance imaging
(MRI), and functional magnetic resonance imaging

(fMRI)1. These methods provide good spatial resolution
but relatively low temporal resolution (of the order of 1 s).
This restricts their application to the analysis of rapid
processes in the brain.

By way of example, a relatively new technique, magnetic
encephalography (MEG), is described below. The discovery
of low-temperature superconductivity was used to construct
transducers with which to record weak magnetic fields. It
opened the possibility for observation of electromagnetic
processes in excitable and contractible organs, such as heart,
stomach, muscles, and (first and foremost) the brain. This
method is advantageous in that it produces a `magnetic
image' of an organ noninvasively, that is, without introdu-
cing a probe into the organ (Fig. 2). Records of varying
magnetic field contours over the head surface are used to
locate cerebral foci of electrical activity with relatively good
accuracy. This technique is possessed of a high spatial and
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Figure 1.The simplestmodel of an integrate-and-fire neuron: (a) schematic

representation, (b) mechanical analog illustrating the principle of work.

1 Positron emission tomography is based on recording sugar distribution

in brain structures while magnetic resonance imaging records oxygen

distribution in the same structures.
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Figure 2.Magnetic encephalography (MEG), an example of one relatively

new method for brain research. Records of magnetic field contours over

the head surface allow foci of enhanced electrical activity of the brain to be

located.
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temporal resolving power, but its practical application
encounters serious difficulties as it comes to the interpreta-
tion of the results being obtained.

Input signals (stimuli) for neural networks are constant or
varying continuous signals as well as random or deterministic
spike sequences. These signals can be delivered either to the
entire network or to its selected elements; also, the elements
may receive either identical or different signals. Spike trains,
averaged activity dynamics of the elements or phase relations
between oscillations in different parts of the network, may
serve as its output signals. In the first case, multidimensional
stochastic processes offer an adequate mathematical tools for
the description of network dynamics. In the second and third
cases, deterministic processes in dynamic systemsmay be used
to the same effect. One of the characteristic features of a
neural network is a learning ability manifested as the
modification of element properties and connection weights
in response to external stimulation. Such a modification may
result in altered dynamics of the network after presentation of
input stimuli.

There are four classes of neural networks differing in the
type of constituent elements [2, 7]:

1. Neural networks in which the dynamics of each element
are described by a system of differential equations. These may
be equations for transmembrane ion transport as in the
Hodgkin ±Huxley model [8], or compartment models in
which the equations describing current dynamics in neuron
structures (dendrites, soma, axones) are combined accord-
ingly to Kirchhoff's laws [9]. This class also includes
simplified phenomenological models designed to represent
essential features of Hodgkin ±Huxley neuron dynamics
described by simpler equations. These are the Hindmarsh ±
Rose [10], FitzHugh ±Nagumo [11, 12], Morris ± Lecar [13]
models and the like. Networks of such neurons allow many
peculiarities of real cell functioning to be fully taken into
account, but the analysis of their dynamics entails great
difficulties.

2. Networks of integrate-and-fire neurons. The integrate-
and-fire model is a relatively simple system that accumulates
incoming signals and generates an impulse (spike) as soon as a
certain threshold is reached. Figure 1a gives an example of
such amodel where functionc is a spike. The model accounts
for such aspects of functioning of a real neuron as absolute
and relative refractoriness, synaptic delay of signal transmis-
sion, postsynaptic potential dynamics, noise component (e.g.
imitating remote dendrites or synaptic noise), etc. Up to now,
these networks remain the most popular object of both
theoretical and simulation studies.

3. Networks of interacting neural oscillators. An oscillator
usually includes interacting populations of excitatory and
inhibitory neurons. Oscillator dynamics are described by
average population activity. A typical example is the
Wilson ±Cowan oscillator [14, 15]. Networks of neural
oscillators are explored by bifurcation theory methods
which allow for analytical and numerical descriptions of
parameter regions in which one or another network dynamic
pattern occurs. The results of investigationsmay be compared
with experimental findings of local and evoked potentials,
EGG, and behavioral reactions. The introduction of delays in
signal transmission between network elements complicates
both network dynamics and its investigation because a system
with the delayed argument describing such a network requires
that the infinite-dimensional space of the initial conditions be
considered.

4. Phase oscillator networks. When a neural ensemble
exhibits oscillatory activity, it may be conveniently described
in terms of phase oscillator [16] dynamics which are
characterized by a single variable, oscillation phase. Net-
works of phase oscillators are useful for analytical and
numerical studies of synchronization conditions in a system
of oscillators. The main problem is to describe parameter
space regions corresponding to different synchronization
regimes (complete or partial synchronization).

The following subtypes of neural networks are distin-
guished, taking into consideration the architecture of neural
connections:

1. Networks with local connections, `all-to-all' connections,
random and sparse connections. The uniform structure of
connections between identical elements provides a basis for
analytical characterization of such networks by methods of
statistical mechanics. The best-known example is the Hop-
field model of associative memory with symmetric `all-to-all'
connections [17, 18] (see also the second part of Ref. [3]).

2. Multilayer networks with forward, backward, and
recurrent connections between layers. Specifically, such archi-
tecture of connections is characteristic of multilayer percep-
trons extensively used in various learning tasks. Learning is
formulated as a task ofminimizing an error function. Inmany
cases, this task is accomplished by the so-called back
propagation of errors [5, 19]. The architecture under con-
sideration is especially popular in applications of neural
networks to pattern recognition, time series prediction,
signals encoding and filtering, memorization of temporal
sequences, etc.

3.Networks with a central element. These networks avoid a
large number of connections due to the fact that a special
central element coupled to all the remaining ones. Such
architecture was proposed for the models of attention [20].
Dynamics and synchronization regimes in such networks are
described in Refs [21, 22].

4. Networks with complicated architecture. This type
includes networks with a hierarchical structure made up of
simpler networks of various types. This kind of network is
needed for multistage data processing and simulation of
complex behavior [23, 24].

1.3 Statement of the task
In the last decade, the theory of neural networks gave rise to a
separate line of research concerned with the dynamic aspects
of neural activity. Russian-language publications include,
besides an article in Uspekhi Fizicheskikh Nauk [2], an
overview [25] covering a period until 1992, that for the first
time, emphasized the role of synchronization in dynamic
models of neural networks. The foreign literature contains
many reviews amongst which monographs [26, 27] and
journal papers [7, 28] are worth mentioning. During the past
decade, a large number of newworks on the subject have been
published which gives an incentive to resume the discussion
on dynamic models with a view of summarizing the available
data, reveal new trends, and map out future research.

The present paper considers a few hypotheses suggested to
explain the role of the spatio-temporal structure of neural
activity in brain information processing and describes neural
networks developed to test these hypotheses. Analysis of
these models shows which variants of the choice of neural
network elements (model neurons or neural assemblies),
neural connection architecture, and interaction algorithms
are most suitable for the solution of problems related to
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mathematical modeling. In accordance with the main types of
models, the paper is divided into parts highlighting the
different aspects of neuron network dynamics as follows:

1) time structure of spike sequences;
2) dynamic activity of neural ensembles, synchronization

and phase relations in neuron and neural ensemble activity;
3) synchronization of neural activity in models of

preattention and attention.
In Section 2, we consider information coding by spike

sequences. To-day, this issue is addressed in two different
ways. One is coding by the averaged spike frequency in a
sequence, the other is coding by the temporal structure of
spike trains generated by individual neurons. For brevity, we
refer to these two approaches as frequency and temporal (or
spatio-temporal) coding, respectively.

In Section 3, we describe typical aspects of neural network
dynamics with special reference to neuron activity synchro-
nization and phase relations which may arise depending on
the interaction between neural populations and the type of
external stimulation.

Section 4 is devoted to the application of the synchroniza-
tion principle to modeling preattention (feature integration)
and attention. We give examples of the approaches to the
simulation of feature integration that differ in the ways of
problem formalization and the structure of synchronizing
and desynchronizing connections. Also, we describe results
obtained with a model of attention in which the idea of
synchronization in a phase oscillator network is combined
with the idea of central executive element. It will be shown
how the attention focusing problem can be formulated and
analysed in terms of a special synchronous dynamics, the so-
called partial synchronization regime in which the central
element runs in phase with a certain number of network
oscillators.

In Section 5, we discuss how recent progress in neural
network modeling contributed to the understanding of brain
processes and propose some promising lines of future
research.

2. Coding by spike sequences

2.1 The neuron and characteristics of spike sequences
In this Section, we consider, in the context of information
coding and transmission, models of individual neurons and
neural networks used to study time-related characteristics of
neuron-generated spike sequences. We shall try to demon-
strate the possibility of such encoding and the conditions for
its optimization.

In line with an established tradition, the neuron is
considered to be a device that converts an input sequence of
spikes into discrete output action potentials transmitted
along axones to the synapses of other neurons. The question
is, which characteristics of spike trains may be of informa-
tional value?

Until recently, the prevailing opinion was that such a
characteristic is the mean spike frequency in a train. This
hypothesis was based on the fact that neurons are able to
modulate the frequency of spike generation upon a change in
stimulation. Moreover, it has been shown that spike genera-
tion frequency correlates with input stimulation intensity (see,
for instance, [29]).

Doubts about the efficiency and universality of frequency
encoding arise from the fact that different modes of stimula-

tionmay produce identical frequencies of spikes.Moreover, it
is obvious (and is confirmed by experiment) that frequency
encoding may be efficient under conditions of slow-changing
stimulation but is of little use in case of rapid rate variations.
An alternative to frequency coding is a hypothesis of
information coding by the temporal structure of a spike
train. The potential diversity and complexity of temporal
structures guarantees the possibility to code information
regardless of its amount and content [30 ± 32]. The available
experimental data indicates that, under certain conditions, a
temporal pattern of neural activity arising in response to
identical stimuli, is reproducible to less than 1 ms [30]. It
should be emphasized that the neuron activity pattern in these
experiments is far from being regular.

Because the informational value of temporal patterns has
never been directly confirmed in an experiment, it is
interesting to examine the theoretical basis for such an
approach using biologically plausible neural models. There
is a variety of temporal patterns of neural activity [33]. For
example, in an animal performing a given task, cortical cell
activity may give rise to interspike intervals with a coefficient
of variation (CV) close to 1. This means that such an activity
is random and can be described only by a statistically
probabilistic process with the Poisson distribution. On the
other hand, the activity of a motor neuron may be regular,
with CV in a range from 0.05 to 0.1. This raises a question as
to the kind of a model of an individual neuron capable of
reproducing such forms of activity. Specifically, what are the
conditions for the generation of a spike train whose
irregularity is not reduced to an effect of a noise component
present in the input signal? Theoretical analysis indicates that
integrate-and-fire elements with potential leakage (usually
employed as components of neural networks) are not suitable
for the purpose because they can generate only very regular
trains of spikes in response to a random sequence of input
signals. How, then, can irregular temporal patterns of activity
appear? To answer this question, Softky and Koch consider
active dendrites that rapidly transport Na+ and K+ ions.
Accelerated decay of synaptic potential in such neurons leads
to the suppression of the time-averaging of input signals. In
addition, the authors postulate concurrent activation of a
large number of synaptic inputs, such that a spike is generated
due to the rapid crossing of the firing threshold. The
feasibility of such rapid conductance remains to be con-
firmed experimentally.

An alternative way of obtaining irregular spike trains is
proposed in Ref. [34]. Here, the desired effect of irregularity is
achieved by means of a specially selected balance between
excitatory and inhibitory components of neural activity.

It has been demonstrated in [35] that under certain
conditions, even standard leaky integrate-and-fire neurons
can produce highly irregular firing. The authors arrived at
this conclusion after introducing into themodel a partial reset
of membrane potential by an output spike fired by a neuron:
the membrane potential U takes the value of bUth, where Uth

is the threshold and b is the reset parameter (04b4 1). Also,
they showed that spike trains with different CV can be elicited
by changing b. It should be noted that Softky and Kokh
considered a case of total reset of potential corresponding to
b � 0. In their study, a model neuron generated a near-
regular spike train in response to a stochastic sequence of
input signals. This explains why CV was close to zero in their
model. CV increases with increasing b (e.g. b � 0:91 gives
CV � 1 while b � 0:98 gives CV � 1:6).
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In principle, there is one more possibility to obtain an
irregular spike train using integrate-and-fire neurons with the
time-dependent threshold. However, it has been shown in [35]
that this model is equivalent to a model with a partial reset of
membrane potential.

2.2 Stochastic neuron and neuron as a coincidence
detector
Ref. [36] reports the evaluation of the accuracy of neural
signal representation in time. Specifically, the authors studied
the transformation of information in a neuron, taking into
account that the input signal is noisy and different subcellular
structures (synapse, dendrite, soma, axone) are also sources
of noise. Two cases are considered.

1. Signal evaluation. In this case, it is assumed that the
signal is encoded in the mean firing rate of a presynaptic
neuron. The objective of estimation is to find the continuous
input signal from the membrane potential of the postsynaptic
neuron.

2. Signal detection. In this case, the input signal is assumed
to be a binary one, and presynaptic spike, if any, is to be
detected from the postsynaptic membrane potential.

Comparison of the results of these two approaches allows
for a conclusion about the efficiency of the synaptic
transmission and the discussion of its optimality. Parameter
values derived from experimental data on the neocortex are
used to demonstrate that a single cortical synapse can not
transmit information reliably, but redundancy obtained using
multiple synapses leads to a significant improvement in the
information capacity of synaptic transmission. Evidently,
averaging in case of temporal or spatial redundancy may be
used to create informatively reliable systems from unreliable
elements.

Ref. [37] compares the behavior of deterministic and
stochastic variants of the Hodgkin ±Huxley model. The
starting point for this work were the results of an experi-
mental study [30] and a subsequent publication [38] in which it
was shown that, for a constant input, spike timing in repeated
experiments is highly unreliable although reliability and
precision are significantly increased (to nearly 1 ms) for
fluctuating current inputs. The authors demonstrated that
the deterministic model fails to reproduce experimental
findings whilst the stochastic model is in excellent agreement
with the experiment. Such an advantage of the stochastic
model is due to the fact that the behavior of membrane
potential near the threshold and the generation of action
potential are critically determined by a relatively small
number of excitable ion channels that are opened near
threshold for spike firing rather than by the total number of
channels that exist in the membrane patch. The following
neuron properties under discussion are of interest: subthres-
hold oscillations in the membrane potential in response to a
constant input, spontaneous spikes for a subthreshold input,
and `missing' spikes for a suprathreshold input. Slowly
varying uncorrelated inputs are coded with low reliability
and accuracy; hence, the information about such inputs is
encoded almost exclusively by the mean spike rate. On the
other hand, correlated presynaptic activity produces sharp
fluctuations in the input to the postsynaptic cell which is then
encoded with high reliability and accuracy. In this case,
information about the input is coded by the exact timing of
spikes.

Ref. [39] considers coincidence-detector properties of an
integrate-and-fire neuron transforming a time-coded input

signal (temporal pattern) into a rate-coded one (firing rate
pattern). A stochastic non-homogeneous Poisson process was
used as the input. The authors derived a formula to describe
the dependence of the coincidence detector on model neuron
properties and parameters.

2.3 Adaptation of neural activity
A series of studies carried out in the past decadewere designed
to investigate adaptive formation of activity dynamics in
individual neurons. Ref. [40] reports a study of burst
generation and spike frequency adaptation in a variant of
the Hodgkin ±Huxley neuron model, based on the theory of
bifurcation of singularly perturbed (rapid-slow, with a small
parameter at some derivatives) systems. The paper presents a
detailed analysis of two bifurcations leading to the break-
down of oscillatory bursting activity, namely mergence of the
limit cycle with the homoclinic orbit (a loop of saddle
separatrix) and bifurcation of the appearance of a saddle-
node in the limit cycle. Either bifurcation leads to the
elimination of the limit cycle (oscillations) by a highly
specific mechanism. The difference between the two bifurca-
tions arises from the peculiar asymptotic behavior of
rhythmic activity frequency near the critical point. In both
cases, the frequency of oscillations tends to zero, even though
the rate of approximation is different. In case of the
homoclinic bifurcation, the cycle period grows slowly as the
logarithm of deviation from the parameter's critical value.
For the saddle-node bifurcation, the period grows rapidly as
e1=3. Basing on the bifurcation analysis, the authors proposed
a model of neuron spike frequency adaptation to a stimulat-
ing current observed experimentally in neurons of lobster
stomatogastric ganglion.

The authors of Refs [41, 42] studied firing adaptation in a
model neuron of the Hodgkin ±Huxley type, where the mean
value and the dispersion of an input signal were possible to
reproduce. In [42], it was shown that the dispersion of
intervals between spikes increased in case of slow dynamics
of the current induced by postspike hyperpolarization;
conversely, variability of interspike intervals decreased if
postspike hyperpolarization dynamics were rapid. In [41],
the adaptation algorithm controls membrane potential by
estimating the intercellular somatic calcium concentration.
This neural model was realized in the form of a chip
containing a silicon neuron.

3. Neuron activity dynamics

3.1 Oscillatory activity of neural ensembles
Neuron-mediated information coding can be realized not
only at the level of individual cells, but also at the level of
neural ensembles. The principles of encoding used for the
purpose are categorized into two types:

1) temporal coding and
2) spatio-temporal coding.
The former principle implies evolution of activity of a

neural ensemble, where activity is understood as the number
of spikes generated by the ensemble for a given time (t; t� Dt)
or a mean membrane potential of neurons that make up the
ensemble.

In the latter case, the emphasis is laid on characteristics of
the spatio-temporal pattern of activity distribution in the
ensemble. It is important that in either case coding is
performed in terms of dynamic regimes developing in a
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coding network under the effect of certain stimuli rather than
in terms of the final state of the network [43].

Many researchers pay special attention to the oscillatory
activity of neural ensembles for the following reasons. Whole
brain EEG reveals rhythmic activity in different frequency
ranges (alpha rhythm between 8 and 13 Hz, low beta rhythm
between14and20Hz,highbeta rhythmbetween20and30Hz,
gamma rhythm over 30Hz, delta-rhythm between 1 and 3Hz,
theta rhythm between 4 and 7 Hz [44]). The oscillations show
good correlation with the psychological state of the subject
under examination. Different brain structures exhibit differ-
ent forms of rhythmic activity at the level of individual
neurons and their populations. The relevant data is obtained
for primary zones of visual andolfactory cortex,motor cortex,
thalamus, hippocampus, etc. [45 ± 50].

Because oscillatory activity is intrinsic in many neuron
structures, it may be supposed that information about a
stimulus is coded on the one hand by oscillation frequency
and phase relations (with special role being ascribed to in-
phase oscillations) and on the other hand by spatial distribu-
tion of oscillating neurons [51 ± 53]. It is believed that the
comprehensive examination of the coding problem would be
helpful in search of ways for the integration of stimulus
features in the neural representation of the stimulus.

In the case of neural activity registration performed with a
single electrode, spectral analysis is preferred to other
methods for data processing. With the advent of the multi-
electrode technique, elucidation of phase relations between
signals from different brain regions acquires an increasingly
greater importance. An example is provided by the data
showing the relationship between the activity of a given
hippocampal `place cell' and the phase of the theta rhythm.
The `place cell' is a hippocampal neuron that helps an animal
(e.g. the rat) to find its way in a maze. The cell is activated
when the rat appears in a certain place of the maze. As the rat
moves across the `receptive field of the place cell' 2, the cell
generates spikes prior to the onset of the next theta rhythm
period. This phenomenon is known as phase advance. Thus,
there is every reason to believe that the phase relation between
theta rhythm and place cell activity provides clues for the
animal on its position in the maze.

An oscillatory neural network has one of the following
dynamic regimes: regular oscillations, quasiperiodic (multi-
frequency) oscillations, and chaotic oscillations. Coding
information in such a network is usually described in terms
of synchronization between network elements and concomi-
tant phase relations. Numerous studies have demonstrated
that the conditions for the development of various dynamic
regimes are essentially dependent on the network element
model being employed. Unfortunately, a detailed description
of an element in terms of multicompartment models [54 ± 56]
makes theoretical analysis very difficult and requires labor-
ious computer-assisted calculations. A supercomputer has to
be used to simulate even relatively simple networks [57].
Moreover, serious problems arise from the lack of experi-
mental data about parameters of the model. For this reason,
mathematical and computer models are usually constructed
with the use of integrate-and-fire neurons, neural and phase
oscillators [2, 7]. In this way, a compromise is achieved
between the accuracy of the description and the simplicity of
the mathematical analysis.

3.2 Small oscillatory networks. Bifurcation analysis
The case of two coupled oscillators is most thoroughly
studied because it allows analytical results to be relatively
easily obtained. Suppose that each of the two identical
oscillators are described by a system of differential equations
and their parameters are selected so that the trajectory of a
stable limit cycle is generated in the phase space. Then,
dynamics of a single oscillator can be described by one
variable, the current phase of motion over the limit cycle.
Dynamics of a system of two weakly coupled oscillators is
described by phase difference Df:
� Df � 0 (coherent oscillations);
� Df � T=2, where T is the period of oscillations (anti-

phase oscillations);
� Df equals neither 0 nor T=2 (oscillations with a phase

shift).
A study of stability of stationary states for Df is based on

the construction of the so-called H-function [58, 59]. A
situation when H-function tends to zero at a certain point
corresponds to a stationary state, the stability of which
depends on the sign of H-function derivative at this point. A
typical example of a study of the dynamics of weakly
connected oscillators composed of Hodgkin ±Huxley neu-
rons can be found in [60]. The main result of this work is the
discovery of bistability in a system with excitatory connec-
tions between neurons at certain parameter values. In other
words, the system produces either in-phase or anti-phase
oscillations depending on the starting point.

Consideration of models with weakly coupled neural
oscillators is beyond the scope of the present communication
(see [61] for information about such models). The review is
confined to the discussion of strongly connected oscillators.

In the case of strong coupling, it is usually difficult to
describe the network dynamics with the help of a mathema-
tical theorem. Therefore, bifurcation analysis and computer
modeling become the main research tools. Ref. [62] proposes
classification of various rhythmic activity generation
mechanisms based on the bifurcation theory. It is noted that
neuron activity models are characterized by qualitatively
different dynamic behavior in the vicinity of different
bifurcations. For example, the disappearance of rhythmic
activity near the Andronov ±Hopf bifurcation is accompa-
nied by a decrease in the rhythmic activity amplitude at a
constant oscillation frequency (the frequency is determined
by the imaginary part of critical eigenvalues). In contrast, the
appearance of saddle-node bifurcation in the limit cycle is
characterized by a tendency of the oscillation frequency to
vanish while the frequency amplitude remains unaltered. The
difference between dynamic behaviors is exploited, for
example, for the induction of different types of bursting
activity by means of a combination of different bifurcations
leading spikes. Specifically, a burst of pulses may result from
the Andronov ±Hopf bifuractaion and vanish through the
same bifurcation. In an alternative case, a burst is fired in
association with the Andronov ±Hopf bifurcation and
vanishes as a result of the saddle-node appearance on the
limit cycle. Ref. [62] considers generation of as many as
120 types of bursts.

A comprehensive bifurcation analysis of a system of two
coupledWilson ±Cowan neural oscillators is reported in Ref.
[63], in which effects of the type and strength of connections
between the oscillators on neural network dynamics are
examined. Four types of connections are considered includ-
ing those between (a) excitatory neural populations,

2 In this context, the receptive field is amaze segment in which a place cell is

activated.
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(b) excitatory population of one oscillator and inhibitory
population of another, (c) inhibitory population of one
oscillator and excitatory population of another, and
(d) between inhibitory neural populations. It is shown that
weak connections of the (b) and (c) types give rise to
correlated oscillations (synchronizing connections) whereas
weak connections of the (a) and (d) types produce anti-phase
oscillations (desynchronizing connections). A network with
intermediate-strength connections is likely to generate quasi-
periodic and chaotic oscillations. Also, different dynamic
regimes may coexist. A simulation study [64], resulted in a
similar diversity of dynamic regimes.

A system of two identical Hindmarsh ±Rose neurons with
electrical connections was explored in [59]. It was shown that
the system had five different dynamic regimes depending on
the strength of polarizing current:
� in-phase oscillations;
� anti-phase oscillations;
� oscillations with an arbitrary phase shift (depending on

current strength);
� coexisting coherent and incoherent oscillations;
� coexisting coherent and quasiperiodic oscillations.
In the two latter cases, the oscillation regime depended on

the initial conditions.
Similar results for the FitzHugh oscillators were obtained

in [65] and for relaxation oscillators with excitatory connec-
tions in [66]. Both studies revealed anti-phase oscillations and
bistability (i.e. coexisting in-phase and anti-phase oscilla-
tions) at a number of parameter values.

Ref. [67] reports a system of two electrically coupled
pacemaker oscillators. The so-called spike-response techni-
que [68 ± 70], was used in this study to explicitly calculate the
neuron membrane potential with the help of two functions
depending on membrane parameters (parameters of spike
generation and reset of membrane potential) and parameters
of electrical coupling respectively. This allowed for the
description of conditions for synchronization regimes with
different phase relations. In particular, the establishment of a
given synchronization regime was shown to depend on the
spike shape.

Ref. [71] describes a model of two integrate-and-fire
neurons with active dendrites. It is shown that, unlike the
case of passive dendrites where only phase synchronization of
two neural activities is possible, active dendrites admit of
resonant synchronization (at a frequency corresponding to
the neuron membrane frequency); a rise in bursting activity is
equally possible. Positive (excitatory) interaction of neurons
leads to synchronous bursting activity whereas a negative
(inhibitory) one produces incoherent oscillations.

A system of two excitatory neurons described by a two-
compartment model of the Hodgkin ±Huxley type was
analysed in [72]. This system operates in two oscillatory
regimes depending on calcium conductance gCa. Low gCa
may be associated with rapid oscillations of practically
constant frequency. Conversely, oscillations with a decreas-
ing frequency (dying oscillations) are likely to develop at high
gCa. It is shown by reducing the system to phase equations and
their bifurcation analysis that only anti-phase oscillations are
stable in the former case and only in-phase oscillations in the
latter. At intermediate gCa values, oscillations may have
arbitrarily shifted phases between neurons.

Ref. [73] presents a bifurcation study of a small oscillator
network of Hodgkin ±Huxley type neurons. The system was
composed of four neuronsmaking up two coupled oscillators,

each containing an excitatory and inhibitory element. Con-
nections between the oscillators extended from excitatory
neurons to inhibitory ones, with delays in signal propagation
being taken into account. The study was designed to
demonstrate the possibility to generate a synchronous
rhythm by changing time-lags in signal propagation from
one oscillator to the other. It was shown that the oscillators
are synchronous at long delays and asynchronous at short
propagation times. The result was obtained using an interest-
ing and simple technique. The authors found numerically a
one-dimensional representation corresponding to the differ-
ence between spike generation times in the two oscillators and
determined the condition at which the zero stationary point
lost stability. This example is a specific case of the two-
parametric bifurcation picture, when two parameters, the
strength of connection between two oscillators and the time-
lag are varied. Other studies have demonstrated that the two-
parametric bifurcation diagram has a very complicated
structure in which regions of synchronous and asynchronous
oscillations alternate [74, 75].

3.3 Large oscillatory networks.
`Games' with coupling characteristics
There is no theory describing possible dynamic regimes in
case of an arbitrary architecture of connections in oscillator
neural networks with more than two oscillators. Most of the
available results were obtained in studies of neural networks
with a large number of elements and uniform structure of
connections (of `all-to-all` or `local` types).

A case of local coupling was most thoroughly explored
using a chain of oscillators in which each component
interacted with its nearest neighbors [76]. It was shown that
such a network can produce traveling waves with a constant
time shift (this result is especially important for the simulation
of lamprey's swimming).

Local connections on a plane make it possible to observe
(in neural networks and other systems) different forms of
dynamics of excitable media, such as stripes of synchronous
activity, rotating waves, and expanding concentric rings [1, 6,
77, 78]. Moreover, the latter paper describes excitons, a
variant of solitary waves that occur in neural networks
(unlike solitons, they do not merge during collision and
destroy one another like classical autowaves).

Local connections on a plane may result in complex
spatial dynamics of oscillators even in networks composed
of identical elements. A study reported in [79] has demon-
strated the possibility for wavelike propagation of activity
patterns in networks of inhibitory elements. At first sight,
such a mode of propagation seems impossible. Because
inhibitory connections reduce the initially activated group of
elements, the activity should be expected to rapidly decay
rather than propagate. The authors consider neurons show-
ing a special property termed post-inhibitory rebound
(membrane depolarization within 30 ± 50 ms after strong
inhibition). Networks of such neurons with local connections
and connection weights organized as a Gaussian function are
able to spread wave activity. The study demonstrates two
types of such activity, continuous wave and interrupted, pulse
wave. Theoretical analysis of mechanisms of emergence and
propagation of an interrupted wave in a simplified neural
network model is reported in [80].

A series of analytical results have been obtained for
networks of integrate-and-fire neurons. Ref. [81] proves a
locking theorem that formulates a simple condition of
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stability of synchronous (coherent) regime in such networks.
The work concerns nerve cells with a refractory period
(decreasing threshold) a unimodal function describing the
variation of postsynaptic potential and time delay in connec-
tions. It is shown that the synchronization regime is stable
once the increasing membrane potential reaches a threshold;
it is, however, bound to be unstable if the threshold is reached
as the potential decreases.

Networks of integrate-and-fire neurons with rare connec-
tions were investigated in [82] using a Fokker ± Planck ±
Kolmogorov equation that describes dynamics of a probabil-
istic neuron membrane potential distribution function.
Different network states are conceivable depending on
parameter values, e.g. a synchronous state in which neurons
exhibit regular firing patterns and an asynchronous state with
stationary global activity and very irregular discharges by
individual neurons. Bifurcation diagrams have been con-
structed that show boundaries of the corresponding regions
on the plane of two parameters. The possibility for oscillatory
activity is considered and the period of slow oscillations is
shown to be dependent in the first place on time-specific
characteristics of the membrane. In case of rapid oscillations,
the period is largely determined by synapse characteristics.

An interesting approach to the analysis of neuron
rhythmic activity in oscillator networks of excitatory and
inhibitory neural populations with different types of connec-
tions is proposed in [83]. The authors consider a system with
rapid and slow variables and use a demonstrative geometric
method to analyse transition of a point depicting neural
activity from one branch of slow movements to another.
Also considered, is the possibility to control this process by
inhibitory impacts accelerating or delaying the transition.
Specifically, it is shown that, in a certain coupling architec-
ture, rapid inhibitory connections can synchronize oscilla-
tions. These findings are used to simulate complex oscillations
(spindles) in the thalamus.

Oscillatory dynamics in neural network models usually
results from the interaction of excitatory and inhibitory
neurons or from the use of pacemaker neurons setting an
endogenous rhythm. Oscillatory behavior of neural ensem-
bles made up of identical excitatory cells can be observed in
experiment. A putative mechanism of oscillations in such
assemblies, considered in [84] is based on the use of a synaptic
depression. The authors discuss a time-discrete mean-field
model describing the average activity and synaptic depression
of two populations of integrate-and-fire neurons symmetri-
cally coupled by a small number of excitatory connections.
There are m connections onto a specific cell. The populations
interact via random weak symmetric connections. It is
supposed that only part of the physically available connec-
tions are active at each moment. The total number of active
connections originating in a population is proportional to
st 2 �0; 1�, the so-called average synaptic reliability at time t.
Dynamics st is described in the following way:

st�1 � d�at� d�1ÿ st� ;

where at is mean population activity and
d�x� � 1ÿ x exp�ÿ1=t�. In other words, st should be small,
if it was small during the previous time step or if at this very
moment the mean population activity was high. Parameter t
is interpreted as the time constant of recovery from synaptic
depression and is referred to as the synaptic depression time.
The work under discussion is concerned with the dependence

of network dynamics on parameters m and t. By using the
averaging theory, bifurcation analysis, and numerical experi-
ments, conditions have been obtained for the existence of in-
phase and anti-phase activity of populations, phase-trapped
oscillations, and quasiperiodic oscillations.

In recent years, conditions for the appearance of oscilla-
tions and their synchronization in networks of inhibitory
interneurons, have been considered in [85 ± 92].

Refs [93, 94] deal with synchronization in large networks
of identical neurons (both excitatory and inhibitory) and
identical connections of the `all-to-all' type, with the external
input values randomly distributed between the elements. In
Ref. [93], the synchronous state is identified from the critical
order parameter value at which the asynchronous regime
becomes linearly unstable. It is shown that, in the case of low
network activity, synchronization is more stable in the
presence of excitatory connections than in systems with
inhibitory connections. Synchronization is impossible at
high activity in a network with excitatory connections.
Ref. [94] considers synchronization in networks with rare
connections. It is shown that synchronization is unattainable
in a network with a small average number of synapses
(smaller than a characteristic threshold value); therefore, the
network always remains in a state of asynchronous activity.
The network operates in a synchronousmode if the number of
synapses exceeds the threshold. Also, theoretical estimates are
obtained for the critical number of synapses (in the weak
coupling limit with the transition to phase oscillators). For
example, the threshold number of synapses per neuron is 364
if the period of refractoriness is zero. The theoretical estimates
are in agreement with the results of numerical experiments.
The authors also studied synchronization regimes in net-
works with inhibitory connections. Numerical experiments
demonstrated that the degree of synchronous neural activity
decreased with increasing strength of inhibitory connections.

3.4 Learning in neural networks
The problem of adaptive formation of system dynamics and
necessary phase relations between elements is of interest for a
neural network as it is for an individual nerve cell. Such
adaptation is usually achieved by an appropriate change of
coupling parameters. Ref. [95] proposes a learning algorithm
that enables a system of two identical Wilson ± Cowan
oscillators to memorize a phase shift between the oscillators.
The paper considers a case of unidirectional impact of the first
oscillator on the second one via a connection between
excitatory populations. Synchronization is described by
introducing a functional that modifies the coupling strength
of oscillators, so as to improve synchrony between the
oscillators. The learning rule is formulated as a differential
equation for the coupling strength whose stationary state
coincides with a desired phase shift. The learning rule being
used, ensures gradual adaptation of the coupling strength to
such a value at which the desired phase shift is achieved.

Another learning algorithm, based upon the given phase
relation in a chain of phase oscillators with different intrinsic
frequencies, is described in [96, 97]. The chain is assumed to be
maintained by unidirectional connections (not necessarily
between immediate neighbors). Each connection is character-
ized by a specific time-lag. Two oscillators may be connected
by several couplings. The learning frequency (common for all
oscillators) and phases for each oscillator comes from an
external source (teacher). The learning rule leads to a change
(adaptation) of both coupling weights and intrinsic frequen-
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cies of the oscillators. According to the learning rule, the
intrinsic frequency is modulated to be in line with the current
oscillator frequency, and the coupling strengths change as

wl
i j � hFiR

l
i j ;

where wl
i j is the weight of the l-th connection between

oscillator j and oscillator i, Fi is the input teacher signal for
oscillator i,Rl

i j is the signal fed into oscillator i from oscillator
j via connection l (it depends on the phase difference between
oscillators i and j and phase delay of the l-th connection
between them), h is a parameter that governs learning
velocity. Ref. [97] reports an analytical study of stability
conditions for the process of adaptation. It presents results
of computer experiments that confirm the possibility for the
learning of a given frequency and phase relations in a neural
network. It is worthwhile to note that these results can not be
extrapolated to a chain of oscillators with bidirectional
(forward and backward) signal propagation.

Ref. [98] uses phase-frequency encoding of input signals
and adaptation of natural frequencies of oscillators to
demonstrate the possibility of memory formation in an
oscillator neural network with constant connection weights
between elements. The incoming stimuli are coded by groups
of oscillators whose natural frequencies are similar to the
frequency of the input signal. The `retrieval' of a memorized
stimulus is mediated through the resonance of activity of the
corresponding ensemble of oscillators in response to an
external input. The paper presents evidence of high efficacy
of such memory in novelty detection.

3.5 Synchronization and phase relations in respiration
and locomotion models
The problems of synchronization and phase relations are
traditionally in the focus of attention of researchers interested
in modeling respiration, locomotion, and a variety of
different gaits.

Neurophysiological breath studies have revealed a con-
flict of two major concepts, the `neural network' concept and
`pacemaker' concept (or the modern form of the latter the
`hybrid'/'pacemaker-network' concept). According to the
neural network concept (largely based on in vivo findings),
the breathing rhythm results from synaptic (mainly inhibi-
tory) interactions between different types of respiratory
neurons (`inspiratory', `post-inspiratory', `expiratory', etc.).
Importantly, the rhythm is generated in the absence of
specific pacemaker neurons known to induce endogenous
rhythmic bursting firing by virtue of their intrinsic properties.
Modeling a respiratory center in the context of the neural
network concept is considered in [99 ± 106]. A few such
models were developed and subjected to comparative analy-
sis. Finally, the authors used neurons of the Hodgkin ±
Huxley type to construct a realistic model of the respiratory
center, consistent with experimental data at several levels,
from cellular (patterns of activity of individual respiratory
neurons) to systemic (respiratory reflexes etc.).

The hybrid concept is based on in vitro findings. It was
shown that spinal cord slices and isolated tissue generate
oscillations of neural activity when synaptic inhibition is
blocked, (i.e. in a situation which can not be explained in the
framework of the neural network concept, and is even wholly
at variance with it). The hybrid concept holds that a neural
breath generator contains a population of pacemaker
neurons (`kernel') that produces a `basic' rhythm and a

neural network driven by this rhythm and forming, in its
turn, output activity patterns. Smith and co-workers devel-
oped a pacemaker neuron model [107, 108] and a complex
hybrid model of respiratory center [109, 110]. A main
disadvantage of the hybrid model is its inability to account
for a number of systemic phenomena, such as the autono-
mous regulation of the length of different respiratory cycle
phases, respiratory reflexes, etc. Moreover, the output
activity pattern (recorded in vitro and realistically repro-
duced in pacemaker models) differs from the normal breath-
ing pattern (recorded in vivo) and resembles a respiratory
pattern under hypoxic conditions.

Rybak et al. [111] have recently undertaken to combine
the two conflicting hypotheses based on the `switch-over'
concept. In accordance with this concept, the respiratory
rhythm is generated either by a purely neural network or
hybrid mechanism depending on the state of the system. The
authors developed and examined a model of `conditional'
pacemaker neurons capable of switching from the continuous
firing regime to the pacemaker regime of collective bursting
due to disequilibrium in ion currents through non-inactivated
sodium channels participating in the generation of pacemaker
activity and potassium channels that block it. In the context
of this model, `conditional' pacemakers support continuous
`background' excitation of respiratory neural networks in
vivo and thus enables them to generate the respiratory rhythm
by the purely neural network mechanism. An elevation of
extracellular potassium ions usually practiced in vitro to
induce rhythmic oscillations (and naturally taking place in
vivo under hypoxic conditions), leads to a decrease of
potassium currents and drives `conditional' pacemakers into
a pacemaker regime. In this case, the respiratory network
receives an input of rhythmic bursting excitation and begins
to operate in the forced oscillation regime, i.e. undergoes
switching to the hybrid mechanism. The model described in
this paragraph allows for a number of interesting predictions
that await experimental verification.

The relationship between the properties of a system of
interacting oscillators that control limb movements and
observable locomotor patterns has been studied in [112 ±
119]. Each gait is characterized by peculiar phase relations
between the extremities. For example, as a horse trots, a
diagonal pair of its legs hit the ground in phase, whereas the
legs on either side of the body are out of phase. The said
studies have demonstrated that switching between gaits can
be described by symmetry-breaking bifurcation in a system of
coupled oscillators. Elucidation of dynamics of neural net-
works simulating bipedal, tetrapodal, and hexapodal loco-
motion made it possible to propose a comprehensive
classification of gaits and natural hierarchy of their known
forms and bifurcations responsible for a change from one gait
to another.

The study reported in [120] models a system of the
coordination of human arm movements. It considers a
network of two Ellias ±Grossberg oscillators [121], each
under fast, self-exciting feedback control. The oscillators
interact via slow inhibitory connections between an inhibi-
tory neuron of one oscillator and an excitatory neuron of the
other. The oscillation frequency is controlled by a constant
input signal reaching the oscillators. As shown by bifurcation
and numerical analysis, in-phase and anti-phase oscillations
may coexist at low frequency values. At higher frequencies,
anti-phase oscillations are replaced by in-phase ones, in
agreement with the experimental data [122]. When the
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frequency is sufficiently high, oscillations with a phase shift
other than 0 and p become unstable.

Models of the central pattern generator that governs
lamprey swimming are described in [123 ± 128] and reviewed
in [129]. The main objective of modeling is to obtain an
experimentally observed phase difference between adjacent
oscillators, regardless of oscillation frequency (lamprey
swimming velocity) and without distortion of the specific
chain architecture of connections between the oscillators. One
model differs from another by the degree of detalization of the
description of functioning of an individual neuron (the scope
of detalization ranges from compartment models of the
Hodgkin ±Huxley type to phase oscillators), structural
organization of neuron-to-neuron interplay within one
oscillator, and architecture of connections between oscilla-
tors (unidirectional and bidirectional interactions with the
immediate and remote neighbors).

3.6 Oscillatory models of information processing
in the hippocampus
Mathematical studies of phase relations at different dynamic
regimes in neural networks provided a basis for the develop-
ment of several models of information processing in the
hippocampus. A series of works were devoted to modeling
phase advance mentioned in a previous Section [130 ± 138].
We describe here, by way of example, the last of these models.
It is actually a system of two Morris ± Lecar neurons, one
inhibitory (interneuron) the other excitatory (pyramidal
`place cell'). A pacemaker signal (theta rhythm) comes to the
input of the inhibitory neuron.An information-bearing signal
enters the `place cell' from fascia dentata when the external
stimulus reaches its receptive field and for some time changes
dynamics of the network so that the pyramidal cell makes the
interneuron generate oscillations with a frequency higher
than that of the theta rhythm. This accounts for phase
advance. This dynamic disappears when a rise in phase
advance to 2p coincides with the delivery of the pacemaker
signal to the interneuron. As a result, the system returns to the
initial dynamic regime. Therefore, phase advance may be
regarded as a process that develops automatically in time
after an initial stimulus. This distinguishes the model being
considered, from many others in which phase advance is
accounted for by the animal's spatial position.

It is worthwhile to note that the hippocampus, along with
the neocortex and central pattern generator in the spinal cord,
is a most popular object of modeling in terms of dynamic
systems by virtue of its marked oscillatory activity in a broad
range of rhythmic regimes, and a variety of functions
performed by the hippocampus in brain information proces-
sing.

Ref. [139] describes a simulation of hippocampal theta
rhythm. Mechanisms of the development of this slow rhythm
(with the frequency in a range from 5 to 9 Hz) having
interesting behavioral correlates remain unclear. One diffi-
culty arises from the fact that hippocampal neurons normally
function with a frequency one order of magnitude higher than
that of the theta rhythm. Hence, an important task is to
obtain a slow rhythm with rapid elements. The paper in
question puts forward a hypothesis that theta rhythm is
generated as the activity passes through a long loop made
up of one excitatory population (region CA1 pyramids) and a
few GABA-ergic inhibitory populations (interneurons of
region CA1, medial septum, and region CA3). The model
produces a stable theta rhythm in a wide range of parameters

consistent with experimentally found values. The rhythmic
activity arises in the model through the Andronov ±Hopf
bifurcation. Remarkably, the frequency of oscillations, thus
induced, is practically constant (with a small variation in the
theta range) both at the boundary of the region of its
generation and inside the region of its further existence. The
authors also discuss the problem of modulation of theta
rhythm frequency by signals coming from brain stem
structures. The results obtained are in excellent agreement
with experimental findings and theoretical concepts of
O S Vinogradova [48].

One of the functions ascribed to the hippocampus is the
formation of memory. In Ref. [140], relations between input
signals are used as a basis for the simulation of information
storage in the hippocampus. The model describes the
hippocampus as an oscillator neural network making up a
three-dimensional structure, the opposite ends of which
receive two input signals to imitate stimuli that in vivo come
to the hippocampus from the entorhinal cortex and septum.
Both signals are periodic oscillations in a theta range having
identical frequency and reaching hippocampal oscillators
with a certain phase shift which depends on the applied
stimuli and spatial location of the oscillator. It follows from
the results of the work, that the phase shift is a critical
parameter responsible for the formation of the spatio-
temporal activity pattern in the neural network and, accord-
ingly, for memory localization.

This fact can be illustrated by the behavior of an
oscillatory network of integrate-and-fire neurons. A mathe-
maticaldescriptionofneuralactivityispresentedinSection6.1.
The network architecture is shown in Fig. 3. Each oscillator is
formed by two neurons, an excitatory pyramidal neuron and
inhibitory interneuron (Fig. 3b). The oscillators are located in
the nodes of a three-dimensional lattice sized N�M�M

c

�
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ÿ

�
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Figure 3. Coupling architecture in a model of hippocampus: (a) three-

dimensional coupling structure; (b) construction of oscillator (interacting

inhibitory and excitatory neurons); (c) excitatory connections to a

pyramidal neuron; (d) inhibitory connections to a pyramidal neuron and

interneuron. Open and solid arrows show the direction of negative

(inhibition) and positive (activation) connections respectively.
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(Fig. 3a). The first coordinate corresponds to the position of
the oscillator relative (along) to the septo-temporal axis of the
hippocampus. Two other coordinates describe the plane
(orthogonal to the said axis) in which a square of M�M
oscillators is located. Each square is characterized by a
specific phase shift between inputs from the entorhinal
cortex and septum and is interpreted as a segment of the
hippocampus (lamella). In other words, this model of the
hippocampus is a chain of N interacting segments. Each
pyramidal neuron is linked by 6 excitatory connections with
adjacent pyramidal neurons (Fig. 3c) and by 7 inhibitory
connections with interneurons from the immediate vicinity
(including the interneuron located in the same node of the
lattice) (Fig. 3d). In addition, there is one excitatory
connection between each interneuron and a pyramidal
neuron and 6 inhibitory connections linking an interneuron
to other interneurons in its immediate vicinity (Fig. 3d). Input
signals reach only pyramidal neurons and become distributed
along the septo-temporal axis so that the pyramidal neurons
of one segment receive identical input signals. Input signal IC
from the entorhinal cortex has the form

IC�n� � aC sin
ÿ
o0t� �nÿ 1�Dt� fC

�
;

where n is the segment number (n � 1, . . ., N). Input signal IS
from the septum travels over the network in the opposite
direction. Therefore, it has the following form for oscillators
of segment n:

IS�n� � a S sin
ÿ
o0t� �Nÿ n�Dt� fS

�
:

Besides the spike-generating activity of individual neu-
rons, the dynamics of the network are convenient to describe
by theN-dimensional pattern of average neural activity in the
segment. The main objective of the study is to find the
dependence of this pattern on Df � fC ÿ fS.

Figure 4 illustrates the dynamics at two Df values (30 ms
in Fig. 4a and 130 ms in Fig. 4b). Each frame in Fig. 4 (the
frames are numbered from 1 to 10) corresponds to one
segment and shows moments of spike generation in each of
the 100 pyramidal neurons (bottom of the frame) and
100 interneurons (top of the frame). Also, each frame
demonstrates averaged neural activity in the segment.

It can be seen from Fig. 4a that all 10 segments exhibit
theta activity at the level of both individual neuron spikes and
mean segment activity oscillating with rather a large ampli-
tude. A phase shift between activities in different segments is
worth noting. The shift between the adjacent segments is close
to 120 ms.

Figure 4b illustrates different network dynamics. Seg-
ments on the right and left ends of the network (three on either
side) show regular oscillations in the theta range. In contrast,
oscillatory activity in the four segments in the middle of the
chain is weak and has a small amplitude. It may be concluded
that a phase shift between the oncoming input signals is
responsible for radical restructuring of the spatio-temporal
pattern of neural activity.

4. Models of attention and feature integration

4.1 Preserving the information about feature association
Modern concepts [141, 142] hold that information processing
in the brain occurs at two relatively independent levels. The
lower one (called preattention) is responsible for extracting

features from input stimuli and for providing simple
combinations of features. Characteristic of this level is a
series of pathways for information processing that run in
parallel (without special treatment of a selected part of
information). The higher level requires attention and is used
to perceive reality as a unified whole. At this level, fragments
of information originating from sensory modalities, memory,
and locomotor structures are assembled by convergence into
coherent percepts, detected, analysed for novelty, and
memorized, if appropriate in short and long-term memory.
A characteristic feature of this level is consecutive processing
of information. At each moment, that part of the available
information is preferentially processed which is in the focus of
attention. In fact, this portion undergoes much more detailed
and thorough processing than the remaining one. Attention is
shifted successively from one object to another to be
eventually concentrated on new, `strong' or essential stimuli.

Features used in coding information about signals in
primary regions of the cortex are of a different nature. For
example, they can be related to spectral, geometric or
dynamic characteristics of an image. Also, features may
differ in terms of modality depending on a source of sensory
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Figure 4. Activity dynamics in a 10-segment oscillatory model of

hippocampus (N � 10) depending on the phase difference between signals

coming from the entorhinal cortex and septum: (a) Df � 30 ms,

(b) Df � 130 ms. Neuronal activity in a segment is shown in a frame

indicated by the segment number. Each segment contains 100 excitatory

(frame bottom) and 100 inhibitory (frame top) neurons. Rhythmic activity

with a period of about 200 ms takes place in all segments of example

(a) and in segments 1 ± 3 and 8 ± 10 in example (b), being low in segments 4,

7 and virtually absent in segments 5, 6 of (b).
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information (e.g. optical or acoustical). It is known that
primary processing of features of different nature or mod-
ality occurs in specialized neural structures of the cortex.
Coherent percepts of objects are only obtained at the level of
associative regions of the cortex [143, 144]. This poses a
problem of neuralmechanisms necessary to preserve informa-
tion about association of the features of interest with
individual objects and integrate these features into the whole
representation of a given object. This issue, known as the
binding problem, is reviewed in [145].

The problem is addressed in two ways based on the
localized (grandmother cells) or distributed representation
of an object, respectively. Difficulties encountered in the
former mode of representation, for example, when the visual
scene contains closely located or intersecting objects on a
complex background, have been extensively discussed in the
literature [52, 145, 146]. The use of distributed representation
for feature integration was proposed in [146] and found
further support in theoretical [147] and experimental [45, 46]
studies. According to this hypothesis, the object's features are
encoded by coherent activity of neurons in different cortical
regions. Such coherence serves as a `mark', that labels
information about a given object. Experimental studies of
primary regions of the animals' visual cortex [45, 46] revealed
stimulus-specific oscillatory activity of neurons and neural
ensembles and its coherence under certain stimulating
conditions.

A view that principles of information grouping must be
the same at both processing levels prompted use of synchro-
nization of neural activity for the elucidation of mechanisms
of formation and switching of the focus of attention [147, 20].
It is supposed that realization of this general approach, at the
two levels, differs in that the lower level of synchronization
reflects direct interactions between neural ensembles in
primary cortical regions, probably with the participation of
the pulvinar nucleus of the thalamus and mesencephalic
reticular formation [148, 149]. At the higher level, synchroni-
zation is under control of specialized brain structures (such as
the septo-hippocampal system and frontal lobes of the cortex)
that play the role of `terminals' during the transmission of
information over the cortex. At the lower level, synchroniza-
tion is used to form simple features (e.g. the presence of a
linear segment with a definite slope). At the higher level, it is
used to integrate all information concentrated in the focus of
attention. As the focus of attention shifts, synchronization
encompasses new cortical zones. This accounts for the
successive information processing at this level.

In what follows, we shall describe models in which the
principle of synchronization is employed to resolve problems
pertaining to feature integration and formation of the focus
of attention.

4.2 Feature integration models: parallel procedures
Let us assume that the sensor input of a neural network is
exposed to activation by a few objects at a time. The
oscillatory neural model of feature integration usually
satisfies the following condition. Features of one object are
represented by an ensemble of synchronously operating
oscillators. Synchronization between ensembles of oscillators
encoding features of different objects must be excluded. Neural
assemblies functioning in synchrony are formed either in
parallel (synchronous ensembles are formed simultaneously
for all objects) or consecutively (synchronous ensembles
coding different objects arise in a certain sequence). Simula-

tion of integration of elementary features of one type, in
agreement with the experimental data obtained in the
laboratories of Singer and Eckhorn, is discussed at length in
[2]. Therefore, we shall focus on a case in which objects are
represented by a few different features.

When developing a model of synchronization-based
feature integration, it must be clearly understood that
synchronization of neural network elements is achieved by
means of adequately combined local connections. Unfortu-
nately, realization of this approach encounters difficulty. On
the one hand, the connections between elements being weak,
the synchronizing forces prove insufficient to ensure rapid
and reliable synchronization of all oscillators encoding the
features of one object. On the other hand, strong connections
may lead to the synchronization of the groups of oscillators
encoding different objects.

Two approaches to surmounting this difficulty were
suggested. One proposes the use of adaptive connections
[150] on the assumption that the coupling force between
oscillators working in synchrony must increase, and that
between asynchronous oscillators decrease. The other sugges-
tion was to use synchronizing local connections between
adjacent oscillators and desynchronizing connections
between oscillators father apart or those encoding for
qualitatively different features [151]. Both approaches lead
to the same effect, that is, synchronization between assemblies
of oscillators can not be achieved if they form isolated
clusters.

Realization of these ideas in neural network models
differs in the degree of approximation to experimental
results. The feature integration model described in [150, 23,
152] shows an apparent tendency to agree with experimental
conditions. Model [150] has been designed to work with
moving objects whose contours are approximated by straight
lines. Modification of the model, as in [23], allows color
images to be considered. This network is composed of
integrate-and-fire neurons sensible to the presence of such
features of the object as color, shape, and motion in their
receptive fields. Oscillators of this network are constructed
based on the interaction between ensembles of excitatory and
inhibitory neurons. The architecture of this model is rather
complicated and reproduces in many known details the
structure of connections between different brain regions
involved in visual information processing, including the
frontal cortical zone that controls eye movements.

The model of Schillen and Konig [151] may be considered
in the context of the development of earlier studies on the so-
called `holonic computer' 3 (see, for instance, [153]). The
objective of modeling is to demonstrate realizability, in
principle, of feature integration in a neural network (and
feasibility of its subsequent technical applications). The
network consists of a few interacting modules, each coding
one of the features (e.g. brightness, orientation, color, speed,
etc.). A module is a three-dimensional network, the compo-
nent elements of which are oscillators of the Wilson ±Cowan
type. Two-dimensional horizontal planes correspond to
visual area topography whilst planes located at different
levels correspond to different gradations of a given feature.
The adjacent and remote oscillators within a module are
coupled by synchronizing and desynchronizing connections,
respectively. The modules are kept in touch by synchronizing

3 Holonic computer (from Greek holos, `total, whole') means connections

of the `all-to-all' type.
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connections between oscillators corresponding to one and the
same pixel of the visual area. Such architecture of the network
makes it possible to work with objects the images of which are
superimposed in the visual area. Specifically, if intersecting
images of objects differ in brightness, correct integration of
their features is possible because these objects are represented
in the brightness-coding module by non-intersecting clusters
of oscillators with synchronizing connections inside the
clusters and desynchronizing ones between them.

Ref. [154] published a few years after [151] differs from it
by only a few non-essential details. It is oriented towards the
work with inputs that contain contours and is closer to the
holonic computer in this respect. Its main results include the
demonstration that the extent of contour enhancement and
neural synchrony increases with the smoothing, lengthening
and closure of the contours.

In 1999, Verschure and Konig [155] proposed a markedly
improved variant of the earlier Schillen ±Konig model. The
main difference of the new model from the previous one
consisted in the use of integrate-and-fire neurons instead of
neural oscillators as network elements. As before, the net-
work consists of modules, but each module is composed of
four serially connected layers of neurons, including one of
excitatory neurons, two layers of inhibitory GABA-A and
GABA-B neurons, and a layer ofmodulatory glutamate-ergic
neurons. Input signals are fed into the latter layer. A central
feature of the model is the presence of a layer of modulatory
neurons. These neurons do not directly influence the
membrane potential of other neurons but have an effect on
their synaptic contacts and therefore can rapidly change
effective connectivity between the units. The network is
designed to experiment with arbitrarily graded color images.

The work under consideration demonstrates at least two
new options of image processing, besides the ability to
synchronize activity of neurons encoding different objects
that is inherent in a feature integration model. One is the
possibility to work with moving objects using no special
detectors of motion. In this case, activity is synchronized as
soon as an object enters the receptive fields of the correspond-
ing neurons, in agreement with experimental data. The
second option ensues from model responsiveness to the
context that presents objects contained in an image. This
capacity is illustrated by two examples below.

The first is an image consisting of two spaced objects each
represented by 4 stripes of two alternating colors. One object
is light-colored (L1 ±L2 ±L1 ±L2), the other is dark-colored
(D1 ±D2 ±D1 ±D2). The network is capable of discriminat-
ing between the two objects. In the second example, the image
consists of 8 light stripes alternating as follows: L1 ±L2 ±L1 ±
L2 ±L1 ±L2 ±L1 ±L2. In this case, the network responds to
the image (in terms of activity synchronization) as the one
containing two unrelated objects made up of L1 and L2
stripes respectively. This mode of network functioning is
consistent with the results of psychological experiments. It is
worthy of note that the network has a special system that
governs decoding one or other context.

It is important that feature integration in the aforemen-
tioned work was achieved by synchronization in a range of
gamma rhythm frequencies regardless of image processing
procedure, either one-step or hierarchical. Hierarchical
systems more adequately reflect the real information treat-
ment process in the brain because primary visual areas of the
cortex integrate only similar simple features, such as the
presence of a moving short bar with a definite tilt angle.

More complicated combinations of features are distinguished
in secondary and associative areas. Because the brain uses a
wide frequency spectrum including several oscillation ranges
(delta, theta, alpha, beta, gamma), it may be supposed that
hierarchical feature integration can be accomplished using
multifrequency quasiperiodic oscillations. The idea of the
realization of such a hierarchical system has been suggested in
[156, 157]. For the simplest case of a two-level system, the
authors put forward a hypothesis that synchronization of
high-frequency oscillations is used to integrate simple features
whilst complex features are integrated by means of additional
synchronization at lower frequency.

This idea was realized in the framework of a neural
network model as described below. The model consists of
two layers, each being a chain of Wilson ±Cowan oscillators.
Oscillators inside both layers are linked by synchronizing
local connections. In addition, there are feedforward and
feedback synchronizing convergent connections between the
layers throughwhich an oscillator in one layer receives signals
from a segment of a few locally coupled oscillators of the
other layer. Stimulation is simulated by the transmission of
constant input signals to some excitatory neurons of the first
layer. As a result, the oscillators undergo transition into an
oscillatory activity regime. It is supposed that features of a
simple stimulus evoke activity in a segment of first layer
oscillators whereas complex features induce activity in several
segments spaced by inactive oscillators.

An important feature of the network under consideration
is the ability to generate quasiperiodic oscillations (high-
frequency oscillations modulated by low-frequency ones;
frequencies of these oscillations differ by an order of
magnitude).

An example of networks functioning in response to a
complex stimulus is presented in Fig. 5. It can be seen from
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Figure 5. Functioning of an hierarchical feature integration model

showing quasiperiodic oscillations in response to a complex stimulus.
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Fig. 5a that stimulusP activates number 3, 4, and 5 oscillators
(group A) and number 7, 8, and 9 oscillators (group B) in the
first layer. The activity of number j excitatory neuron in the
same layer is denoted by Ej�t�. Figure 5b shows activity
dynamics of neurons 3, 5, and 7 in the first layer. Evidently,
there is coherence between E3�t� and E5�t� (because these
oscillators correspond to the same segment) whereas E7�t�
shows anti-phase oscillations, corresponding to a different
segment. At the same time, all these oscillators are synchro-
nized at a low frequency. In-phase oscillations within one
segment are related to intralayer connections, whereas
synchronization of low-frequency oscillations in different
segments of the first layer is due to effect of a segment of the
second layer (group C) containing locally connected oscilla-
tors. Such synchronization of complex stimulus features may
be interpreted as hierarchical.

4.3 Feature integration models: consecutive procedures
This Section is devoted to a different class of models in which
integration of features of simultaneously presented objects is
performed sequentially, one after another. The sequence of
objects can be either deterministic or random. As shown in
[158], the deterministic search in an image may have an
advantage of automatically providing information about the
number of connected objects and distinguishing objects with
different types of connectivity.

Examples of models using a consecutive procedure are
given in [159, 160]. These models can be regarded as a
translation of the Hopfield model of associative memory
[17, 18] into the language of oscillator neural networks. As
usual, the network elements are oscillators made up of a pair
of integrate-and-fire neurons coupled by one excitatory and
one inhibitory connection. Connections between the oscilla-
tors are of the `all-to-all' type. They are fixed and chosen from
an available set of objects (patterns) using the Hebbian
learning rule analogous to that used in Hopfield's networks
[17, 18] (the connections can be either synchronizing or
desynchronizing). Such a choice ensures that synchronizing
couplings connect oscillators belonging to one and the same
pattern whilst desynchronizing couplings connect oscillators
belonging to different patterns.

If patterns of certain objects used to form connections
arrive simultaneously at the input of such a network then
synchronous activity of oscillators representing one object
will be, after some time, superseded by that of oscillators
representing another object, etc. (the sequence of object
selection being random). The matter is that a pattern active
at one time suppresses oscillator activity in other patterns;
however, it is in turn suppressed by the growing activity of its
constituent inhibitory neurons. It should be noted that in
addition to feature integration, the model is capable of
associative reproduction of the patterns stored in memory.
If an object is represented with some distortions, the network
will restore its correct pattern in the form that came to be
stored in memory when the connections were built up in the
network.

A similar feature integration model is described in [161].
The authors also used a network of oscillators with `all-to-all'
connections but chose to avoid learning (making connec-
tions) in accordance with the Hebb rule. Instead, they
exploited an optimization criterion for the learning quality
that implies maximal discrimination of input patterns in a
minimal learning time. The criterion is peculiar in that it was
obtained for a given small pool of neurons instead of its

laborious calculation for the whole network. Corresponding
optimization was achieved by annealing [162]. It was shown
that the use of this criterion ensured synchronous firing of
oscillators encoding each pattern. When a few patterns were
presented simultaneously, periodic changes of activity were
observed in oscillators encoding different patterns. Also, it
was demonstrated that the results of learning were consistent
with those obtained using the Hebb rule (correlation between
coupling weights in the two learning modalities was of the
order of 0.9).

Desynchronizing connections are used in one or another
form in many feature integration models. The model of Ritz
and co-workers [160], discussed in preceding paragraphs,
contains numerous long-range desynchronizing connections
which, in principle, can couple any pair of oscillators in a
network. Such a complicated (and biologically irrelevant)
system of connections can be avoided by using as, a source of
desynchronization, a small number of inhibitory neurons
(sometimes only one of them), each linked to the correspond-
ing group of excitatory neurons by forward and backward
couplings. This approach has been realized in the models
developed byHorn and co-workers,Malsburg andBuhmann,
Wang and Terman [163 ± 165].

Ref. [163] was one of the first studies performed with the
use of this approach. The principle of feature integration as
employed in this work is convenient to illustrate with an
example of a network of four excitatory (e11, e

1
2, e

2
1, e

2
2) and two

inhibitory (i 1, i 2) neurons. The neurons are combined into
two groups labeled 1 and 2 by superscripts. Inside each group,
there are feedforward and feedback couplings between
excitatory and inhibitory neurons. Interactions between the
groups are maintained by virtue of connections linking
inhibitory neurons. There are no connections between
excitatory neurons.

Excitatory neurons of groups 1 and 2 encode character-
istics of the object's shape (e.g. triangle or square) and color
(e.g. red or green) respectively. The situation with two objects
simultaneously presented to the network input (e.g. a red
triangle and green square) is simulated by signals of the
following form incoming the excitatory neurons:

inpkj � I kj � Rj; j � 1; 2; k � 1; 2 ;

where I kj is the signal coding the k-th feature of the j-th object
and Rj is the noise with the parameters identical for the
features of one object.

Elements of the network show oscillatory activity which is
organized so that neurons e11, e

2
1 responding to the red triangle

work as coherent similar to neurons e12, e
2
2 responding to the

green square. At the same time, pairs of neurons e11, e
1
2 and e21,

e22 are out of phase. Coherent functioning ismaintained due to
identical noise parameters for each object whilst alternation
of the activity of the neurons encoding different objects is
ensured by inhibitory neurons.

A similar mechanism of asynchronous activity of oscilla-
tors coding different objects is described in [168]. The authors
examine dynamics of a network of two Wilson ±Cowan
oscillators coupled by excitatory connections and interacting
with a common inhibitory neuron. It is shown that such a
network is subject to anti-phase oscillations, if the action of
the inhibitory neuron is sufficiently strong. This finding is
extrapolated to a large three-dimensional network in which
different horizontal layers encode different features. Input
objects are represented by the activity of non-intersecting
populations of oscillators. It is demonstrated that in a two-
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object system, the inhibitory neuron supports anti-phase
population activity whereas synchronizationwithin a popula-
tion is achieved through the agency of horizontal and vertical
excitatory connections between oscillators.

This model was improved in [165] that considers a two-
dimensional network called LEGION (Locally Excitable,
Globally Inhibitory Oscillator Network). The network
consists of relaxation oscillators with local connections and
a common inhibitory neuron interacting with all oscillators of
the network and having a desynchronizing effect on the
activity of locally uncoupled oscillator ensembles. The net-
work is peculiar in that the strength of excitatory connections
depends on oscillator activity. Given sufficiently high activity
of an oscillator, it has a strong effect on the surrounding
oscillators. Due to this, reliable synchronization of oscillators
representing one and the same object is maintained.

Let us consider how the LEGION network functions in
case of a binary image in which objects are represented as
connected sets of pixels. Oscillators coding an object in the
network synchronize their activity through local excitatory
connections. Ensembles of oscillators coding different objects
compete with one another via a common inhibitory neuron.
Network parameters are chosen in such a way as to ensure
`survival` of an oscillator ensemble, the activity of which
grows faster than that of other assemblies in which it rapidly
declines. The survival is short-term, however, because after a
time the activity of the entire network is suppressed by the
inhibitory neuron. In this way, the network is made ready for
activation of another oscillator ensemble. The time-sequence
of activation of oscillator ensembles is conditioned by a noise
component of incoming signals. Therefore, different ensem-
bles are activated in a random sequence.

In [166, 167], the LEGION network was used to segment
objects in real medical images with promising results.

It should be noted that a network in which a consecutive
examination of the objects is realized, may be considered as a
model of both feature integration and attention. The
possibility of such dual interpretation is emphasized in one
of the early works concerned with models of attention [168].
The choice of a fraction of sensory information, correspond-
ing to one object of the presented set of objects, is regarded as
a principal task to be solved with the help of an attention
model [169]. This aspect of attention proves identical with
integration of the features of an object in the focus of
attention. The inhibitory element interacting with all oscilla-
tors and determining synchronization regime actually serves
as a central executive structure for the system of attention.
However, it is difficult to explain the presence of such central
inhibitory elements in the system of attention from the
biological standpoint.

4.4 Models of attention
A model of attention based on the use of a network with one
central element was proposed byKryukov [20]. It differs from
theWang ±Terman model in that its central element is not an
inhibitory neuron but an oscillator (the so-called central
oscillator, CO), interacting with other oscillators of the
network (the so-called peripheral oscillators, PO), through
the agency of synchronizing forward and backward connec-
tions. In terms of brain neuron structures, the model is
interpreted in the following way: the central oscillator
simulates the septo-hippocampal system whilst peripheral
oscillators represent cortical columns corresponding to some
definite features of the object.

The focus of attention is formed in a network as
synchronization of the CO and a certain PO ensemble (here,
under synchronization is meant the work of the CO and a PO
at roughly identical frequencies). In [20], network elements
are phase oscillators whose dynamics are described by a single
variable (oscillation phase), and interaction between oscilla-
tors is realized following a phase-locking scheme (see Eqns
1 ± 2 in Section 6.2). Such oscillations have been extensively
used to construct models in recent neurophysiological studies
[58, 61, 72, 96, 97, 170, 171]. For simplicity, connections
between POs are assumed to be absent, so that all interactions
occur via the CO. The network parameters determiningwhich
oscillators are involved in the focus of attention are the
coupling strengths and natural frequencies of oscillators
(natural or intrinsic frequency is the frequency at which an
oscillator works when the connections are switched off).

Conditions under which synchronization regimes develop
in the models of attention as well as scenarios of transition
from one regime to another were investigated in [22,157]. Let
us consider a case in which a set of oscillators are divided into
two groups so that oscillators of group k are activated by
stimulus Sk and have intrinsic frequencies distributed over
intervalDk (k � 1, 2). It is assumed that intervalsD1 andD2 do
not intersect. Both stimuli, S1 and S2, are simultaneously
delivered to the input of the system of attention. In the context
of attentionmodeling, the following synchronization regimes
are of interest:
� global synchronization of all oscillators in the network

(corresponding to the case when both stimuli are included in
the focus of attention);
� partial synchronization of the CO and one group of POs

(corresponding to the involvement of a single stimulus in the
focus of attention);
� lack of CO synchronization with any PO group

(corresponding to the absence of the focus of attention).
It has been shown in [22, 157] that switching of attention

between two stimuli implies an intermediate state in which the
focus of attention is either absent or encompasses both
stimuli. Moreover, it has been demonstrated that the
exclusion of one stimulus from a focus of attention contain-
ing two stimuli may lead to the destruction of the focus
instead of concentration of attention on the remaining
stimulus.

An important operational regime of the system of
attention under natural and experimental conditions consists
of spontaneous switching of the focus of attention between
several stimuli that simultaneously reach the input. It has
been shown that spontaneous deployment of attention from
one complex stimulus to anothermay serve as amechanism of
their successive sorting in pop-out experiments [172]. Under
complex stimulus it is meant a stimulus conveying informa-
tion about more than one feature, e.g. shape and color. The
term pop-out is used to describe identification of an object
characterized by a given set of features in a visual scene
containing several objects. In what follows, we show how a
model of spontaneous deployment of attention can be
formulated for an oscillator network with the central element.

To begin with, it should be noted that the above model of
attention is assumed to have parameters (coupling strengths
and intrinsic frequencies of oscillators) that remain unaltered
during formation of the focus of attention. The current
frequency of the CO in the course of partial synchronization
depends on these parameters and, in its turn, determines the
ensemble of oscillators recruited to participate in partial
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synchronization. Given fixed parameters, the possible out-
come of the formation of the focus of attention may be an
empty ensemble or an ensemble containing only a part of the
oscillators encoding a certain stimulus or even an ensemble of
some oscillators that encode for two different stimuli (in the
latter case, the focus of attention contains a `chimera', i.e. a
combination of incomplete sets of features of different
stimuli). Such defects in the formation of the focus of
attention can be accounted for by the `unfortunate' localiza-
tion of CO intrinsic frequency on the frequency axis and can
be corrected if the CO intrinsic frequency is not constant but
varies (adapts) somehow during the formation of the focus of
attention.

We describe here a biologically motivated algorithm of
adaptation of CO intrinsic frequency leading automatically to
its shift, such that it excludes the aforementioned defects in
the formation of the focus of attention.

The possibility of adaptation of the frequency of a
biological neural oscillator to the frequency of input stimulus
was demonstrated by Ukhtomsky and co-workers [173].
Ukhtomsky regarded frequency adaptation (oscillator labi-
lity) as one of the general mechanisms of information
processing in the brain. Specifically, this mechanism was
believed to be instrumental in the formation of stable
excitation in a neural ensemble. It was called `Ukhtomsky
dominant'. Similar experimental results concerning fre-
quency adaptation were obtained in [174].

Frequency adaptation of network oscillators to enable
them to memorize a set of stimuli of different frequencies was
realized in [175]. The principles of adaptation of neural
activity to an input have been considered in Section 2. That
a central oscillator can modify intrinsic frequency during
formation of the focus of attentionwas also postulated in [20].

Amathematical formulation of the model of spontaneous
deployment of attention [176] is presented in Section 6.2.
Eqns (1), (2), and (3) describe dynamics of CO, PO, and CO
intrinsic frequencies respectively. It follows from the latter
equation that CO intrinsic frequency varies, tending to match
the current CO frequency value (in other words, the oscillator
undergoes gradual `habituation' to its current frequency and
thus makes it its intrinsic frequency).

It is assumed that a set of r stimuli Sk (k � 1, . . . ; r) is
simultaneously fed into the input of the system of attention.
Each Sk is encoded in the activity of a group of POs
containing q oscillators, whose intrinsic frequencies are
uniformly distributed in a Dk interval on the frequency axis.
For simplicity, all intervals are taken to have length 1 and be
spaced by empty intervals of length 1,

Dk � �2kÿ 1; 2k�; k � 1; 2; . . . ; r :

Therefore, the entire interval over which PO frequencies
(omin, omax) are distributed is as large as 2rÿ 1. (It is
worthwhile to note that the shift of all intrinsic frequencies
of oscillators in Eqns (1) ± (2) is equivalent to the change of
phase variables; hence, the possibility to choose arbitrary
values for omin without the loss of generality).

Let us break up the entire stimulation time (0, T ) into
equal intervals t1, t2, . . ., ts. The procedure of spontaneous
switching of attention is as follows: at the outset, all
oscillators start with phases randomly and uniformly dis-
tributed over the interval (0; 2p). The initial CO intrinsic
frequency is omin ÿ 1. At the starting point of each time
interval tj ( j � 1, . . ., s), CO intrinsic frequency o0 abruptly

changes to acquire an arbitrarily selected value within the
interval (omin ÿ 1, omax � 1). In other moments, the network
evolves as described by Eqns (1) ± (3) in Section 6.2.

Let us now fix the value of oscillator-to-oscillator
connection (w � 0:5). This value is chosen to be sufficiently
large to ensure synchronization of group k at an appropriate
o0 (close to themiddle of intervalDk). However, it is too small
to synchronize oscillators of other groups (because the
spectrum of PO intrinsic frequencies which can be synchro-
nized by the central oscillator with intrinsic frequency o0 is
given as jo0 ÿ oij4w). Results of numerical simulation
indicate that the CO is synchronized with oscillators of one
of the PO groups during a time interval tj. Which group of PO
oscillators is involved depends on o0 values at the starting
point of interval tj. From this moment onward, the CO
intrinsic frequency evolves towards PO intrinsic frequencies
in the nearest (in terms of distance on the frequency axis)
group. The final position of CO intrinsic frequency is close to
the center of a group of oscillators with which CO works in
synchrony during time tj.

The results of the simulation are presented in Fig. 6. The
graphs illustrate evolution of current PO frequencies and CO
intrinsic frequency. Throughout the entire simulation period,
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(the spectrum of oscillator intrinsic frequencies in this group ranges from
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groups of oscillators underwent synchronization with the CO
in the following order: group 1, group 2, group 5, group 1,
group 2, etc. It follows from the figure that during time
intervals tj the CO intrinsic frequency varies so as to be
optimal for the synchronization of oscillators of one of the PO
groups. Current frequencies of these PO oscillators tend to be
synchronized with the CO frequency. As a result, after a
transitional period, almost all oscillators of the group begin to
operate in synchrony with CO.

5. Conclusion

5.1 A 40 year dispute still incomplete
Dynamic models of neural activity, used to verify hypotheses
principles of information processing in the brain, are very
important for the elucidation of the role of the time structure
of activity of individual neurons and temporal relations
between activities of different neurons and neural ensem-
bles. This review considers basic ideas underlying the models
of brain oscillatory activity that have been developed during
the past decade. Also, it shows that many problems can be
resolved in the framework of a unified approach based upon
synchronization of neural activity. It may be expected that
this approach will lead to an optimal combination of parallel
and successive information processing consistent with natural
mechanisms of brain activity.

Oscillator neural networks have advantages and disad-
vantages as compared with the traditional paradigm con-
nectionism. The theory of neural networks has emerged from
attempts to describe, in formal-mathematical and computa-
tional terms, the ability of the brain to resolve complicated
intellectual problems. Working principles of artificial neural
structures and algorithms developed by the late 1980s provide
only a rough approximation to real processes in the brain.
They fail to adequately reflect its structural organization, nor
do they take into account many important physiological
functions of natural neurons. Not infrequently, they operate
with nothing else but averaged dynamic characteristics of
activity of neural structures and assemblies. In these frame-
works, it is equally impossible to model metastable states and
phase transitions and to study spatio-temporal relations of
neural behavior. This markedly restricts the possibility for
information coding and processing. As a rule, such models
are designed to accomplish one concrete task (pattern
recognition, formation of associative memory and condition-
ing, etc.), but they are incapable of imitating universal
activity, including automatic choice and interaction of
different intellectual functions depending on external condi-
tions. No wonder their development has brought no sub-
stantial progress in understanding principal brain functions,
such as memory, attention, consciousness, motion control,
formation of goal-oriented behavior, coordination of ascend-
ing and descending information flows, intuitive and logical
thinking, emotional support of neurophysiological processes,
etc.. The systemic approach to the theory of neural networks
and related neurocomputing problems, the development of
which was given a powerful boost in the 1980s, suffers by now
from the lack of new ideas. The center of gravity in these
studies shifted to the improvement of the known approaches
and broadening the sphere of their application. Significant
progress has been achieved in applied neurocomputing
(especially in detecting optical and acoustical images, auto-
matic classification, forecasting and synthesis of time series,

optimization of technological processes) during the last
decade. But it is clear that further progress, in both the
theory of neural networks and the broadening of their
applications, will depend on new breakthroughs in brain
research. The brain is by far superior to all modern systems
of artificial intelligence in terms of universality, adaptive and
learning abilities, optimal behavior under real-life conditions,
accuracy and reliability of functioning in uncertain situations
or when receiving a noisy message.

Studies on dynamic aspects of brain workmay be a source
of new approaches and ideas for neurocomputing. In
connection with this, a question arises whether oscillations
are a crucial attribute of brain activity or only a form of
information processing that developed in the course of
evolution. It is hardly possible to give a definitive answer to
this question now.

Scientists are nearly unanimous in that oscillations
naturally arise by processes controlling periodic motion. As
regards other brain functions, opinions of neurophysiologists
and model designers vary widely from the extreme of total
neglect of oscillatory activity (some consider it to be a purely
experimental epiphenomenon of no informational value) to
attaching great importance to its role in the work of
practically all brain structures. To-day, there are numerous
experimental materials [44, 48, 50, 145, 177, 178) giving good
reason to believe that oscillations are associated with a variety
of thought processes. True, it would be premature to conclude
definitively that the relationship between synchronization of
oscillations on the one hand, and feature integration and
attention on the other hand, is an indisputable fact. At
present, there is only a promising hypothesis supported by
ever increasing experimental evidence.

The present review shows that recent studies have given a
deep insight into conditions under which oscillations are
produced and their possible role in information processing
in the brain. Specifically, substantial progress has been
achieved in understanding the synchronization of oscilla-
tions and its role in attention and feature integration. At the
same time, much more remains to be done to promote
practical application of the theory of oscillator neural net-
works. There are very few applied fields in which oscillator
networks can successfully compete with traditional neural
networks and other systems of artificial intelligence. This can
be accounted for by both the complex nature of the object of
research (the description of dynamic behavior is, as a rule,
much more complicated than that of stationary states) and
the poor understanding of many neurophysiological mechan-
isms underlying brain work.

In addition, it should be noted that the dispute between
representatives of physico-mathematical and neurophysiolo-
gical sciences over the role of mathematical modeling in the
development of brain sciences has a history of more than
40 years (see the Table). Arguments of opposing sides are
cited here from Refs [179, 180]. The subject of discrepancy is
of crucial importance because there is, thus far, no definite
answer to the question `How does man think?' posed in the
beginning of this review. The answer to this question is closely
connected with the answer to another question: ``Will
computer modeling of intellectual brain activity allow us in
the future to understand `How man thinks' or is it simply a
tool for the development of intellectual technologies, being of
little value for neurophysiology?''

Such discussions amongst representatives of different
disciplines are very common in young sciences, such as
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biological physics. Indeed, looking back into the history of
biophysics, one can see numerous examples of disputes at
the dawn of many research fields (e.g. debates between
I W Goethe and I Newton concerning physical aspects of
color vision, between L Galvani and A Volta on `animal
electricity', between K A Timiryazev and P P Lazarev on
photochemistry and mechanisms of photosynthesis, etc.). In
the majority of cases, subsequent studies by the followers
and disciples demonstrated that both opponents proved to
be right.

We believe that investigations into brain activity
dynamics will further develop through close cooperation
between neurophysiologists providing experimental data
and model designers using the data. Notwithstanding the
aforementioned arguments, new discoveries should be antici-
pated that will promote the creation of more sophisticated
systems of artificial intelligence.

It is worthwhile to note that the late 20th century
witnessed a change of paradigms in brain neurophysiology.
Many universally accepted basic principles of this science

Table. Arguments of opposing sides in the 40 year dispute on the role of mathematical modeling in neurosciences

Thesis Antithesis

Whereas physical components of a computer system have
nothing to do with the functions being computed (the
computational procedure is directed only by software), a
model-program can, in principle, reproduce information
processing by the brain to any desired degree of accuracy
speciéed by the programmer. All limitations and defects of
the existing programs ensue from the lack of knowledge and
so far inevitable simpliécations; they are sure to be elimi-
nated in the course of time.

Computer programs manipulate symbols, whereas the brain
works with semantic entities. Elements of conscious mind
have semantic content indispensable for the survival of an
organism. For example, the brain detects contours of a
predator in a noisy environment and instantly and ade-
quately responds to its appearance. Similarly, the brain
discriminates between edible and inedible items, between a
sexual partner and the remaining animals, etc. In a word, it
chooses a proper form of semantic behavior in a complex
environment. A machine manipulates symbols moving them
from one cell to another in accordance with a given set of
rules. This is syntax without semantics.

The assertion that systems of `artiécial intelligence' must
necessarily possess all properties of human brain is essen-
tially absurd. The requirement that such systems should have
exactly the same parameters as the brain is akin to the desire
to have an aircraft that lays eggs (just because it must êy).
Thus far, we know very little about the thought process and
semantics. Therefore, one can not be quite sure about
concrete properties underlying brain work.

The brain is a `biochemical machine' par excellence for
manipulating molecules. It is peculiar properties of biochem-
ical molecules that underlies effects of consciousness de-
scribed in speciéc terms of hormone-receptor interplay.
Brain activity takes place in the context of such notions as
pain, thirst, joy, agitation. etc. This activity develops in a
hierarchical system upward from the molecular level to the
whole brain (Fig.7). For example, a sensation of thirst is
sometimes attributable to the work of certain hypothalamic
neurons which are in turn activated by a speciéc peptide
(angiotensin II).

`Biochemical brain' is not necessarily the sole physical system
capable of thinking. Computer software that simulates brain
processes must reflect only the informational aspect of these
processes. Modeling should not be identified with exact
reproduction. A plane flies not because it imitates the bird's
flight. At the same time, one can think (if appropriate) of a
model of peptide actions in hypothalamus that would
reliably describe them to the level of each individual synapse.

Computer simulation can be just as well employed to model
hydrocarbon oxidation in a car engine or digestive process in
the stomach. A model of brain processes is as real as a model
describing fuel combustion or digestion. A car can not be set
in motion by modeling petrol combustion with a computer,
nor will food breakdown in the stomach be promoted by
computer-simulated digestion. For exactly the same reason,
models of thought fail to produce neurophysiological effects
of this process.

`Artificial brain' can work to the same effect without using
biological molecules. For example, microprocessors are
conceivable (and already available) that can imitate retinal
or cochlear function in terms of input and output activity
patterns, due to their ability to respond to external signals
(light or sound) in real time. Such schemes are constructed
based on the known anatomical and physiological character-
istics of the cat's retina and cochlea of the barn owl. Selected
parameters of their outputs are very similar to those of the
signals produced by the organs they simulate. No neurome-
diators are used in microprocessors; therefore, neuromedia-
tors are not indispensable for obtaining a desired result.

It is impossible to reproduce concrete (versus abstract)
properties of the brain only with the help of a formal
program for symbol manipulation. This purpose can be
achieved if the structure of logical elements originates in
biologically important molecules. Such molecules may have
developed incidentally in the course of evolution. Once
formed, they now underlie the thought process in living
systems which depends on structural changes in these
molecules. Any system of other nature can probably think
too but in a quite different way than biological systems. The
thing ismodern programs are not simply immature, they take
a different route.
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were revised. One of the latest reviews by O S Vinogradova
was entitled ``Neurosciences in the end of the second
millennium: Change of paradigms'' [183].

Further productive development of neurosciences is im-
possible without neural network modeling even though many
difficulties will have to be surmounted as shown in this review.

5.2 Prospects of further research
The theory of oscillatory neural networks has advantages and
disadvantages compared with the traditional approach based
on the concept of threshold elements [PDP 1986]. This theory
is in better agreement with experimental findings, but
mathematical analysis of oscillatory models is difficult. We
believe that further progress in the theory of oscillatory neural
networks will depend of the success of the following lines of
research.

1.Dynamic studies of neural networks with a variable input
signal. In mathematical terms, the task can be reduced to the
examination of non-autonomous dynamic systems. An
example of this approach is presented in [61], where the
authors found that certain aspects of information processing
in the brain are reminiscent of the work of an ultrashort-wave
receiver (FM-radio) in which frequency modulation is
employed to encode input signals. Another example is
FitzHugh ±Nagumo neuron dynamics, in response to a
periodic input as described in [184].

Variability of input signals makes it difficult to analyse
dynamic regimes of neural networks. Additional difficulties
are posed by the necessity to consider these dynamics taking
into account that inherent characteristics of the network
(such as connection strengths, signal delays, threshold of
neurons) also vary during learning and memory formation.
The following steps may prove useful for the development of
this line of research:
� a study of dynamics and phase relations of possible

inputs;
� a study of networks receiving input signals of small

amplitude;
� a study of networks dynamics following a short period

of stimulation by a constant external signal.

2. Multilayer oscillator neural networks with different
coupling architecture. Of special importance are neural net-
works with local connections inside the layers and forward
and backward convergent couplings between the layers. Such
organization corresponds to the structure of connections
between cortical columns. The presence of a central element
in such networks facilitates general control of information
processing through a moderate amount of connections. In
particular, networks with a central element may be used to
simulate interactions between the hippocampus and the
neocortex.

3. Oscillator neural networks with multifrequency oscilla-
tions. Neurophysiological considerations dictate that neural
networks must function in a relatively narrow frequency
range. Moreover, the efficiency of signal coding by different
frequencies is poor because of low signal resolution in this
frequency range.

There are two options available to enhance coding
efficiency. One is to employ spatial frequency coding which
consists of the distribution of signals coded in similar
frequencies over different parts of the network. This
approach is used in [176] for the construction of a novelty
detectionmodel. The other option is to use several frequencies
at a time to encode information and thus increase coding
space dimension.

As noted earlier in this Section, the theory of oscillatory
neural networks has an important implication, besides its
neurophysiological applications, for the development of
artificial neural networks with which to resolve technical
problems. To-day, there is a possibility, in principle, to
construct artificial neural systems with a broad spectrum of
intellectual capabilities. An important breakthrough in this
area would be creation of a system of interacting oscillators
arranged as a neural network capable of feature integration,
attention, recognition andmemorization of new information.
All necessary components for such a system are at hand. An
immediate task is to select thosemodels from the existing ones
that could be most effectively used for the purpose and to
work out principles of interactions of the available compo-
nents within the system.Many aspects of such interactions are
already known, others will come to be understood in the
course of further joint studies of neurophysiologists, psychol-
ogists, mathematicians, and computer model designers.

The authors are grateful to I A Rybak and G S Cym-
balyuk for the help in the preparation of a part of
Section 3 concerning the models of respiration and locomo-
tion. The work of G N Borisyuk, R M Borisyuk, and
Ya B Kazanovich was supported in part by the Russian
Foundation for Basic Research (grant 99-04-49112).
R M Borisyuk and Ya B Kazanovich also received support
from EPSRC (GR/N63888/01). The work was supported in
part by a RFBS grant for leading scientific schools
(G R Ivanitski|̄, 00-15-97985).

6. Appendices

6.1 Integrate-and-fire neuron dynamics
Dynamics of an integrate-and-fire neuron is given by the
following relations.

1. Threshold:

r�t� 1� � �rmax ÿ r1� exp�ÿath�tÿ tsp�
�� r1 ;
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Figure 7. Structural organization of the nervous system shown on different

hierarchical scales.
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where rmax is the maximum threshold value, r1 is the
asymptotic threshold value at t!1; ath is the rate of
threshold decrease, and tsp is the moment of generation of
the last spike till moment t.

2. Postsynaptic potential for the input to a neuron:

PSP j�t� 1� � PSP j�t� exp�ÿa j
PSP� � a ;

a � wj ; if t jsp � t j � t� 1 ;

0 ; otherwise ,

�

where w j is the coupling strength (positive for excitatory
coupling and negative for inhibitory one), t j is time delay,
a j
PSP is the rate of decrease of postsynaptic potential of the j-th

neuron, t jsp is the moment of generation of the last spike till
moment t for the j-th neuron.

3. Noise:

N�t� 1� � N�t� exp�ÿaN� � x ;

x 2 N�0; s� ;

where aN is the rate of noise attenuation and x is the normally
distributed random value.

4. Somatic membrane potential:

V�t� 1� � VAHP exp
�ÿ aV�tÿ tsp�

�
;

where VAHP is postspike hyperpolarization, aV is the rate of
decrease of somatic membrane potential, and tsp is the
moment of generation of the last spike till moment t.

5. Total potential:

P�t� 1� �
X
j

PSP j�t� 1� �N�t� 1�

� V�t� 1� � Iext�t� 1� ;

where Iext is the external signal.
6. Spike generation:

if P�t� 1� > r�t� 1�, then tsp � t� 1.

6.2 Oscillatory model of attention
Attention model is formulated in terms of a phase oscillator
network. It is described by the following equations:

dy0
dt
� o0 � w

n

Xn
i�1

sin�yi ÿ y0� ; �1�

dyi
dt
� oi � w sin�y0 ÿ yi� ; i � 1; 2; . . . ; n ; �2�

where y0 is CO phase, yi Ð PO phases, o0 Ð CO intrinsic
frequency, oi Ð PO intrinsic frequencies, nÐ the number of
peripheral oscillators, w coupling strength between oscilla-
tors, dy0= dtÐCO current frequency, dyi= dtÐPO current
frequencies.

Modification of the CO intrinsic frequency is described by
equation

do0

dt
� ÿg

�
o0 ÿ dy0

dt

�
; �3�

where parameter g gives the rate of adaptation of CO intrinsic
frequency to its current frequency.
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